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1. Introduction

In recent years, many of researches are concentrated on
reducing the channel dimension of poly-Si TFT’s for high
integration [1],[2]. However, as the channel length is
reduced, poly-Si TFT’s are subjected to more severe short-
channel effects in comparison with bulk-MOSFET’s [2]. It
was known that using thin gate oxide in poly-Si TFT’s
suppresses short-channel effects [3] and make low-voltage
operation possible [4]. However, because growing a high
quality thin gate oxide on poly-Si is very difficult so far,
short-channel effects in poly-Si TFT’s with thin gate oxide
have not been fully investigated.

In this work, we investigated short-channel effects in n-
and p-channel poly-Si TFT’s using a high quality very thin
(12nm) ECR N,O-plasma oxide as a gate dielectric and
compared the results with using thermal gate oxide.

2. Experiments

Complementary poly-Si TFT’s were fabricated on
thermally oxidized silicon wafers using SPC method. A
12nm-thick ECR N,O-plasma oxide was grown at 400°C
with a microwave power of 600W. For comparison a 9.7nm-
thick thermal oxide was grown at 900°C in dry O,. Gate and
S/D regions were doped with Ph.” (BF,") implantation with
a dose of 5x10"°cm™ for n-channel (p-channel), followed by
annecaling at 900°C in N, Some of samples were
hydrogenated in ECR apparatus at 300°C with 600W.

3. Results and Discussion

Fig. 1 and 2 show the Ip-V transfer characteristics of n-
and p-channel TFT’s, respectively. The measured device
parameters are summarized in Table I. N;O-TFT’s show
higher mobilities and lower minimum leakage currents in
comparison with thermal-TFT’s for both n- and p-channel
cases. It was found that N,O-plasma oxidation does not
degrade surface of poly-Si resulting smooth interface, leads
to higher mobility [4]. In addition, defects in the grain
boundaries are passivated during N,O-plasma oxidation [4].
The improved performance of hydrogenated N,O-TFT’s are
due to lower trap density of channel poly-Si film.

Fig. 3 shows the normalized threshold voltage versus
channel length (L). The shift is larger at higher drain bias.
The more severe shift in n-channel TFT’s, particularly at
high drain bias, are attributed to the higher ionization rate
of electrons in comparison with holes, leads to enhanced
channel avalanche multiplication [2]. The hydrogenated
devices exhibit severe shift, especially for n-channel device,
suggesting higher charge accumulation in active poly-Si [3].
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It should be noted that, in spite of thicker oxide, N,O-
TFT’s exhibit smaller shift in comparison with thermal-
TFT’s; this is considered to be due to the role of nitrogen
atoms. In our secondary ion mass spectroscopy (SIMS)
measurement, N,O-plasma oxide has a nitrogen-rich layer at
the interface. Fig. 4 shows the X-ray photoelectron
spectroscopy (XPS) intensity of N(Is) at the interface. The
N(ls) energy of 397.8eV reveals that the oxynitride layer
contains strong Si = N bonds [4]. Therefore, we can infer
that Si =N bond has strong immunity under impact
ionization, resulting smaller shifts of N;O-TFT’s at high Vp.

Fig. 5 shows that subthreshold slope is reduced as L is
decreased; this is attributed to the charge accumulation in
poly-Si film by impact ionization [2]. The severe reduction
in hydrogenated devices reveals that the lower trap density
makes the devices more sensitive to the effect of charge
accumulation [3]. The abrupt increase of slope in
hydrogenated device at L= 1pm is due to punchthrough.

The leakage current in short-channel device is related
not only drain induced barrier lowering but also channel
electric fields Fig. 6 shows that minimum off-state leakage
current is rapidly increased as L is reduced blow 5um for
both n- and p-channel cases.  Fig. 7 shows that the punch-
through voltages (Ver) is decreased as L is reduced below
3pm in n-channel TFT’s, while kept roughly constant in p-
channel TFT’s. Thus, in n-channel devices, the increase of
leakage current is due to the increase of channel electric
field (L>3um) and drain induced barrier lowering (L<3pm).
However, in p-channel devices, the increase of leakage
current is mainly attributed to the increase of channel
electric field in all range of channel lengths.

4. Conclusions

Short-channel effects in n- and p-channel poly-Si TFT’s
with high quality very thin ECR N,O-plasma gate oxide
were investigated. It was found that nitrogen-rich layer at
the interface containing Si = N bonds, which has good
immunity under impact ionization, suppressing the short-
channel effects. Charge accumulation by impact ionization
is mainly responsible for the short-channel effects.

In addition, the results on low voltage operating circuits
will be presented.
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Fig. 3. Threshold voltage versus channel length for n- and p-
channel TFT’s. Threshold voltage is measured at a constant current
with Ips=10nA at and 3V.
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Fig. 4. XPS N(ls) intensity of N;O-plasma oxide at the interface.
Inset : depth profile of N(1s) intensity.
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Fig. 5. Channel length versus subthreshold slop of n-channel N;O-
TFT’s before and after hydrogenation.

Fvd=3v ®*

N-chapnel

T

: — T
—0O— Themal-TFT
- §Q:9 —e—N O-TFT =

1

T T

@ ecececrnintcisnnnan @
"“"'l-l-lydrcni NzO-'l"FT

—
L e,
o9,
F/d=-3V
P-f:hapnell

W occrnennsneaiannn. ®

1

\Hydro. Nzo-ﬂ-"r
M 1 2 1 1

O channél Lehgth fum)'°

Fig. 6. Off-state leakage current versus channel length for n- and p-
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Fig. 7. Punchthrough voltage versus channel length for n- and p-
channel TFT’s. Vpr defined as a Vps where Ip reaches |10nA| at

Table 1. Summary of device parameters. Device size is
W/L=10p/10p. Threshold voltage is measured at Ids=10nA at
Vds=0.1V. On/Off current ratios are for the gate voltage swing of
~5V for n-channel and ~7V for p-channel.

Type Vit 13 S Imin | On/Off

Ther N-ch 1.27 [ 13.0| 027 | 272 | 0.78
mal P-ch -2.15 | 228 | -0.46 | -81.6 | 0.63
N;O | Un- N-ch | 1.40 | 31.7| 032 | 247 | 144
hydro. | p.ch | -2.18 | 41.4 | -0.44 | -722 | 1.01
Hydro. | N-ch | 1.25 | 39.6 | 0.30 | 5.9 6.93

P-ch | -1.89 | 43.8 | -0.35 | -13.7 | 6.96
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