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1. Introduction
Recently developments in optical communications

technology already enable the commercial use of l0-Gbit/s
systems. Experimental development of the next generation
of cosreffective TDM and WDM optical fiber networks has
started |,21. It is very important for device researchers to
clarify and demonstrate how fast ICs can operate.

InAlAs/InGaAs HEMTs have achieved record current
gain cutoff frequency (f1), transconductance (gm) , and
maximum oscillation frequency (f*u*) and are considered to
be the fastest devices at room temperature. An f1 and frpx of
over 200 GHz and a 96 of over 1000 mS/mm are available
using 0.l-pm-gate devices in ICs t3l. In addition to
demonstrating the feasibility of the device for MMICs, we
have successfully expanded the applicable field of the device
to high-speed digital ICs by introducing an InP recess-etch
stopper [4] and by monolithically integrating a vertical diode
as a level-shifter [5]. In this paper, we discuss to what extent
HEMTs can meet the requirements for ultrahigh-speed digital
ICs and over 40-Gbit/s ICs and modules, which we have
achieved so far, are summartzed.

2. Device Design and Performance
Figure I summarizes grn and fr of III-V FETs ever

reported. It can be reasonably considered that the increase in
gm corresponds to the vertical scaling (thinning a barrier
thickness, d) and that the increase in f1 corresponds to the
lateral scaling (shortening a _qate length, Lg). Both f1 and g*
for InAlAs/InGaAs HEMTs are remarkably higher than those
for others. This advantage results from the better electron
transport properties, the low parasitic resistance, and the
scale-down of the channel. In the graph, gate-delay-time
(tpo) contours calculated using an analytical expression for
the rpc of SCFL (Source Coupled FET Logic) [6] are also
shown. Other'parameters assumed in the calculation were
those extracted from our fabricated InAlAs/InGaAs HEMTs.
The contours clearly shows that it is important to achieve an
effective balance between gp and f1 for high speed
operation. The-state-of-the-art performance of
InAlAs/InGaAs HEMT (fr=200 GHz, gm=l.2 S/mm) should
result in an intrinsic rpd of about 4 ps/gate which is small
enough for achieving over 40 Gbit/s operation even if we
take the transmission delay into account [7]. Reproducibility
and uniformity of the device performance are crucial to
achieve such high-speed digital ICs.

Figure 2 shows the structure of our HEMT with an InP
recess-etch stopper. The layers were grown by MOCVD.
The InP recess-etch stopper enables us to design the barrier
thickness precisely and reduces the threshold voltage
scattering. To keep the g* of over I S/mm, the total barrier
thickness including the 5O-A-thick InP layer was designed to
be 140 A. ttre shelt density of the 6-doping was designed so
that the threshold voltage (Vm) was -0.5 V. To get abrupt
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Figure l. gm and fT of various FETs and gate delay contours of
an SCFL inverter.
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Figure 2. InAlAs/InGaAs HEMT with an InP recess-erch'sropper.

Table I. Example of Performance for 0.1-pm-gate InAlAs/InGaAs
HEMTson a2-inch wafer (N=32)

Average Standard deviation

Vth(mV) -419

gm(S/mm) 0.95 0.032

fT(GHz) 174 7.2

fmax(GHz) ～523 43

heterointerfaces between InP and InAlAs, growth conditions
for the materials and gas-switching sequences have been
optimized. Ohmic contacts are formed by the non-alloyed
metals with the n+-InGaAs/n+-InAlAs cap layers. The
contact resistance was 0.07 .trun. WSiN is used as a
Schottky metal for the InP layer for the better thermal
stability comparing with Ti [8].

Table I summarizes an examples of performance for 0.1-
pm-gate InAlAs/InGaAs HEMTs on a 2-inch wafer.
Although ft" g- is lower than our expectation as a penalty of
the lateral etching during the gate-recess etching, the value
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still retain 0.95 S/mm and Cgo decreases by a factor of 2.

The small feed-back capacitance increases f-u* and is also
advanta-qeous for high-speed operation of SCFL circuits.

In addition to FETs, a level-shift diode is also needed in
digital ICs. To reduce the interconnection length and CR-
delay time, a small diode with a low turn-on resistance is

required. For this purpose, InGaAs-pn layers [4] or InAlAs-
Schottky layers wel€ grown on the HEMT layers with an n+-
InP etch stopper. One-level and cross-over interconnection
lines were made by a lift-off and an electro-plating methods,
respectively. MIM capacitors yere made with a SiN film

3. Over 4O-Gbit/s ICs
Table II summarizes IC sets using our InAlAs/InGaAs

HEMTs for 40 Gbit/s optical transmission experiments. To
boost the operation bit rate of ICs and modules as high as

possible, the following novel circuit technologies were used.
(1 ) Distributed-circuit design techniques [9,10, I 1].
(2) High-speed Latching Operation Flip-Flop circuit [12]
(3) Super-Dynamic Flip-Flop circuit [13].
(4) Wideband data and clock buffer using peakin-e and

feedback techniques [14]
(5) Chip-size cavity package with 6-RF ports [15]

The highest operation bit rate of 64 and over 40 Gbit/s
for multiplexers (MUX) and demultiplexers (DEMUX) were
measured on wafer. Error-free operations up to the
maximum bit rates were confirmed. The packaged IC
modules for the MUX and DEMUX also operated at beyond
40 Gbit/s. Electrically multiplexed and demultiplexed 40
Gbit/s, 300-km transmission has been successfully
demonstrated using the IC modules described above [14, 16].

4. Prospect
As shown in Fig. 1, increase in 96 is more effective to

reduce the gate delay than an increase in fl is. Reducin-e
source resistance and thinning the barrier are more crucial.
Minimum barrier thickness limited by the tunneling current
was estimated to be 80 A ttZl and intrinsic gp of 2.2 S/mm
is estimated for the barrier by assuming the saturation
velocity of 2.7x707 cm/s. f1 of over 250 GHz and g* of 1.5

S/mm have been demonstrated by a few groups using InP-
based HEMTs. 3 ps/gate operations, which is small enough
for 80 Gbit/s ICs, is becoming realistic after improving
uniformity and reproducibility.

5. Conclusions
A O.l-prm-gate InAlAs/InGaAs HEMT with an f1 of over

160 GHz and a 96 of 1 S/mm is now available for
application in circuits. An InP recess-etch stopper improved
the uniformity of threshold voltage and enabled us to apply
the HEMTs in digital ICs. Novel circuit technologies make
the most of the high-speed performance of the devices and
boost the operating speed of ICs. As a benchmark for future
large-capacity networks, electrically multiplexed and
demultiplexed 40 Gbit/s, 300-km transmission was
successfully demonstrated using InP-based HEMT ICs.
Although there are remaining issues which should be solved
in their practical use, there is a wide room for increasing the
operation speed of ICs using InP-based HEMTs.
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Table II Summary of ICs and modules for optical transmission
intt lnAIAs/1nGaAs HEMTIeXDCrlIIlcnls usl

Circuit
Bandwidth/

Bit rate

Gain

(dB)
Output

Power
(w)

2:l MUX〔 14]

Preamp.[10]

Baseband amp.[9]

Signal distributor

[11]

Decision[14]

1:2 DEMUX[14]

Frequency
Divider[4]

Frequency
Divider〔 14]

Limiting arnp.[10]

1-64 Gbit/s

(1-52 Gbit/s)*

DC-32 GHz

DC-47 GHz

DC-100 GHz

15->40 Gbit/s

(15-46Gbit/s)*

2-40 Gbit/s

(2-40 Gbit/s)*

DC-40.4 GHz

2-46(3Hz

34-40 GHz

9
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0.92Vpp

l.OVpp

l.2Vpp

O.5Vpp

O.94Vpp

O。94Vpp

O.4Vpp

O。9Vpp

10dBm

2.2

0.44

1.1

1.1

1.7

3.8

0.55

1.1

0.070

*:Performance of packaged IC modules
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