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l. Introduction
The conventional single hetero-junction high
electron mobility transistors (SH-FIEMTs)

have shown excellent microwave performance.
However, the SH-HEMTs suffer from their
low current density, which should limit the
power handling capability of device. Recently,
a double channel pseudomorphic-high electron
mobility transistor (P-HEMT) has demonstrated
a promising potential as a microwave power
device due to their high current driving
capabjlity[l]. Additionally, the transconductance
enhancement has been also reported from the
inverted structures[2,3]. In this work, we report
an Alo.zsGao.zsAs[no.zsGao.zaAs/GaAs inverted
double channel HEMT structure. This
heterostructure was grown with the use of
optimized low-pressure metalorganic chemical
vapor deposition (LP-MOCVD) growth
conditions and quantum-well design. We have
also successfully fabricated 1.8 pm-gate power
HEMT and systematically characterized the
device performance.

2. Experimental
An AlGaAsAnGaAs/GaAs pseudomorphic
epilayer was grown on a (100)-oriented

semi-insulating GaAs substrate by
LP-MOCVD. The chamber pressure was kept
at 76 tor. Trimethylgallium (TMG),
Trimethylaluminum (TMA), ethyldimethylindium
(EDMIn), arsine(Aslls), and silane(Silla) were
used as the Ga, Al, In, As sources and n-type
dopant, respectively. The cross section of the
sample structure is shown in Fig. l. In
designing the upper channel (channel 1), the
Si-delta doping was not inserted in zffi A
-thick undoped AlGaAs layer on top of the
channel to improve the breakdown voltage
characteristics and the Si-delta-doped GaAs
layer was introduced below the InGaAs

channel. For the case of the lower channel
(channel 2), the isolation of the delta-doped
layer from GaAs buffer layer results in
improved carrier-confinement in the channel.
Also, by carefully controlling the InGaAs layer
within the critical thickness, a dislocation-free
pseudomorphic heterostructure was obtained
with a 80 A InGaAs channel layer. In order to
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Fig. 1. The schematic diagram of the proposed

inverted double channel HEMTs structure (unit: A).
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Fig. 2. The electron mobility and 2-DEG sheet
carrier density versus spacer thickness.
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determine the optimum spacer thickness in the
AlGaAsInGaAs/GaAs heterostructure, different
spacer thicknesses were grown and their
effects were investigated. Figure 2 shows the
electron mobility and 2-DEG concentration
versus the spacer thickness. The highest
2-DEG sheet carrier density without degrading
the electron mobility was obtained at a spacer

thickness of 60 A. Hall measurements showed
carrier mobility of 5010 .*?V .r at 300 K
with corresponding sheet carrier density of 4.53

x10r2cm-2. Conventional photolithography and

lift-off techniques were employed for the device
fabrication. Alloyed Au/GeA.Ii metal was used

for source and drain contacts. Gold was
evaporated as the Shottky contact metal. The
gate dimensions are 1.8x200 pmz.

3. Results and Discussion
The measured current-voltage characteristics

of this device at 300 K are shown in Fig. 3.

Good saturation characteristics of drain current
are obtained. Figure 4 shows the saturation
current density and extrinsic transconductance
versus gate voltage at room temperature. A
maximum drain current as high as 820mA/mm
was achieved. This value is comparable to that
of single AlGaAsInGaAs P-HEMTs with
similar gate length[4]. The maximum extrinsic
transconductance of 320 mS/mm is achieved at
300 K. In addition, it is to be noted that large
value of g. is sustained over a wide range of
gate voltage from -2.0 V to 1.8 V. The high
drain current and the wide range gate voltage
swing are attributed to the high sheet carrier
densities and the operation of double channel,
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Fig. 3. Measured curent-voltage characteristics of
the inverted double channel P-HEMT with a gate

dimension of 1.8x200 pri at 300 K.
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Fie. 4. Extrinsic transconductance and saturation

current density versus gate voltage at 300 K.

respectively. Compared with the single channel
structures, the inverted double channel
P-IIEMT in this work exhibits higher power
performance.

4. Conclusions
An AlGaAsAnGaAs/GaAs P-HEMT stilcture
has been grown and characterized. The sheet
carier concentration and the electron mobility
at 300 K were 4.53 x l0r2 cm-2 and 5010 cmzl
V's, respectively. The fabricated 1.8x200 p
m2 device exhibited the high maximum current
of 820 mA,/mm. Additionally, the maximum
extrinsic transconductance was 320 mS/mm.
The improved device performance is attributed
to the increased 2-DEG sheet density with
corresponding large mobility resulting from the
inverted double channel structure. These
observed performance characteristics make this
device a promising candidate for microwave
power device applications.
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