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1. Introduction

The dynamic threshold MOSFET’s (DTMOS) are
attractive for very low power applications due to the ideal
subthreshold slope and the high current drive at very low
supply voltage (Vg < 0.5 V) [1-4]. To enhance the current
drive of DTMOS, a large body effect is essential, because
DTMOS operating at V,, effectively operates at V+4V,, [2].
The large body effect is usually achieved by high channel
doping to reduce the depletion layer width. In this paper, we
propose a novel Accumulated Back-Interface Dynamic
Threshold SOI MOSFET’s (AB-DTMOS), in which the very
large body effect is achieved by thin SOI thickness.

2. AB-DTMOS

Fig. 1 shows a schematic view of the proposed AB-
DTMOS. The back interface between the non-doped thin
SOI and the buried oxide is accumulated by the large negative

back bias. The gate electrode is connected to the body.
The body effect factor () of AB-DTMOS is expressed as
4V, |_Csor ! fox
y= L= =3—— (1)
V| Cppe  tsor

where t¢, is the SOI thickness and t,y is the gate oxide thick-
ness. By thinning the SOI thickness, AB-DTMOS can real-
ize larger yand thus, higher current drive than conventional
DTMOS.

The accumulated back-interface devices with sup-
pressed short channel effect have already been proposed as
electrically thinned intrinsic channel (ETIC)-SOI MOSFET
[5], in which the gate is not connected to the body. They
have: (1) poor subthreshold slope ( > 100 mV/dec), (2) low
current drive due to very high vertical electric field leading to
low mobility, (3) severe floating body effect due to accumu-
lated holes at back interface. By connecting the gate to the
body, AB-DTMOS solves all the drawbacks. Therefore, the
AB-DTMOS has the advantages of both the ETIC-SOI
MOSFET and conventional DTMOS.

3. Experimental

The AB-DTMOS and ETIC-SOI MOSFET are com-
pared in the experiment. The devices measured are fully
depleted (FD) SOI devices fabricated on a SIMOX wafer [6].
The thicknesses of the gate oxide, SOI, and buried oxide are
100A, 400 A, and 1000 A, respectively. N* poly Si gate is
used and the channel doping concentration is in the order of
10" cm®, The devices are characterized in the three modes
shown in Table I. When V=0V and V,,,=0V, the devices
operate as the FD mode. When V=0V and V,,,=-20V, they
operate as the ETIC-SOI mode. When gate is tied to body
(Viy=V,,) and V,,=-20V, they operate as the AB-DTMOS
mode. Fig. 2 shows the subthreshold characteristics in the
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three modes. Vj;, of ETIC-SOI is too high and that of FD
SOl is too low, but V,, of AB-DTMOS is just between them.
Fig. 3 shows the subthreshold characteristics of AB-DTMOS
and ETIC-SOI where Vj, is varied. Body current is also
shown. Derived yfrom Fig. 3 is as high as 0.8. Figs. 4 and
5 show the V,, rolloff and the S degradation by the short
channel effect. AB-DTMOS has the ideal subthreshold
slope and suppresses the short channel effect very well. In
Fig. 6, the on/off characteristics are compared. AB-DTMOS
shows the high current drive and low off-current, but ETIC-
SOI shows the poor current drive.

4. Comparison with Conventional DTMOS

The AB-DTMOS and conventional DTMOS are com-
pared analytically. In the conventional DTMOS, uniformly
doped channel profile is assumed. At a given V,,, the deple-
tion layer width of AB-DTMOS is half of that of conventional
DTMOS and V), for both devices are expressed as a function
of

v,
V,; (Conv.DTMOS) = 2¢,, + % @)
V, (AB-DTMOS) = 24, + L £82 3)

I+y
where ¢; and ¢r; are Fermi potentials and Vgg; and Vg, are
work function differences. Note that Vgg; and Vpg, are
negative. It is expected that yof AB-DTMOS has two times
as large as that of the uniform DTMOS at fixed V.

Fig. 7 shows the dependence of V,;, on ycalculated by
the simulation. To vary V,, and ¥ the channel doping con-
centration is changed in the conventional DTMOS and the
SOI thickness is changed in the AB-DTMOS. In both de-
vices, the increase in ¥ leads to the increase in V,,. As is
discussed above, AB-DTMOS has larger yat a given V,,,. It
should be noted that the experimental result fits the simula-
tion very well. .

The retrograde channel profile is often used in the
conventional DTMOS for low V}, and large ¥[2]. However,
the retrograde channel profile has always lower ¥ than AB-
DTMOS at fixed V,,, because AB-DTMOS realizes the ideal
low/ultrahigh step channel profile electrically and achieves
the maximum y Although the counter doping in the con-
ventional DTMOS also leads to larger yand low V,, [2], the
same effects apply to the AB-DTMOS.

DTMOS operates at the low vertical electric field be-
cause the body is tied to the gate [1]. At the low vertical
electric field, the impurity scattering is dominant. AB-
DTMOS also shows higher mobility than the conventional
DTMOS, because AB-DTMOS with non-doped channel
shows the less impurity scattering than the conventional
DTMOS. Both large y and high mobility in AB-DTMOS
result in the high current drive.



5. Conclusions

We have proposed the high performance AB-DTMOS

with large body effect at low supply voltage.

AB-DTMOS

has thin depletion layer width corresponding to the SOI
thickness and an ideal low/ultrahigh channel profile, resulting

in the maximum body effect.

Experimental results show

steep subthreshold slope, high current drive due to the large
Vi shift, and suppressed short channel effect.
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A schematic view of AB-DTMOS. The back interface
between the non-doped thin SOI and the buried oxide is

accumulated by the large negative back bias.
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Table I  Three operation mode of the devices.

operation mode Vi Vs
FD SOI MOSFET - oV
ETIC-SOI MOSFET 0oV | 20V
AB-DTMOS =v, | -20v
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Fig. 2 The subthreshold characteristics of the FD, ETIC, and

8 AB-DTMOS shown in Table I . L,=0.8um.
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Fig. 3 The subthreshold characteristics
of AB-DTMOS and ETIC-SOI MOSFET
where Vj, is varied. Body current (/) of
AB-DTMOS is also shown. V,, =0-0.7V
(0.1V step). Derived ¥ is 0.8.

Fig. 4 The dependence of V,, on L,. AB-
DTMOS has appropriate V,, and sup-
presses the short channel effect well.

Fig. 5 The dependence of § on L,. AB-
DTMOS has the ideal subthreshold slope
and suppresses the short channel effect
well.
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Fig. 6 The on/off characteristics of the FD, ETIC, and AB-
DTMOS. L, is varied. AB-DTMOS shows the high current drive
and low off-current, but ETIC shows the poor current drive.
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Fig. 7 The dependence of Vy;, on y by the simulations for uniform
DTMOS (#,=30A), and AB-DTMOS (z;,, =30,100A ). Experi-
mental data is also plotted. ¥ of AB-DTMOS has two times as

large as that of the uniform DTMOS at fixed V.

313



