Two-Dimensional Numerical Simulation of Solid-Phase-Crystallized Polysilicon TFT Characteristics

Tsung-Kuan Chou and Jerzy Kanicki

Center for Display Technology and Manufacturing

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109,

U.S.A.

(Phone) 1-734-998-7929, (Fax) 1-734-998-6789, E-mail: atkc@eecs.umich.edu, kanicki@eecs.umich.edu

1. Introduction

Polycrystalline silicon (poly-Si) thin-film transistors (TFTs) are actively studied by different laboratories for its potential use in the SRAM and large-area applications such as the active-matrix liquid crystal displays (AMLCDs) and x-ray image sensors. The main drawback of poly-Si TFTs in comparison with the crystalline silicon (c-Si) MOSFETs is the existence of the grain boundary states within the active region of poly-Si TFTs that can cause a lower field-effect mobility, a higher subthreshold slope and a higher leakage current. Thus, it becomes the most important issue to investigate how the grain boundary states at different interfaces affect the ON-state. subthreshold, and OFF-state characteristics in order to optimize the current-voltage behaviors of poly-Si TFTs.

2. Simulation Model and Experimental Results

In order to analyze the conduction mechanisms of poly-Si TFTs, there have been several models proposed by different authors[1]-[4]. However, those models neglect the poly-Si/gate oxide interface states (top grain boundary states) and the poly-Si/buffer oxide interface states (bottom grain boundary states), and they can be used to explain only the TFT ON-state or subthreshold behavior.

In this paper, we present a two-dimensional (2-D) numerical model that can explain the current-voltage

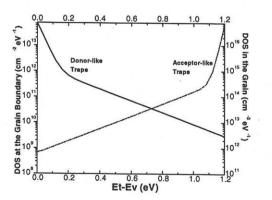


Fig. 1 Density-of-states (DOS) distribution at the grain boundary and in the grain used for 2-D simulation.

characteristics of poly-Si TFTs. This model is based on DOS at the poly-Si/gate oxide interface, poly-Si/buffer oxide interface and inter-grain boundary (transverse grain boundary) as well as the low intra-grain defects. The energy distribution of DOS for all the defects is given by the commonly accepted double exponential expression (Fig. 1). A 1000Å thick n-channel poly-Si TFT prepared by solid-phase-crystallization (SPC)

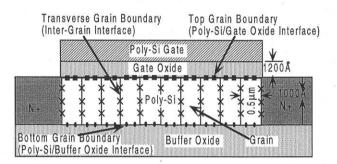


Fig. 2 Cross-section of 1000Å poly-Si TFT (not to scale) used in this modeling.

process with an average grain size of $0.5\mu m$ was used in this work (Fig. 2). The simulated characteristics (ON-state, subthreshold and OFF-state characteristics) of the poly-Si TFT show a very good agreement with the measured data as seen in Fig. 3 and Fig, 4.

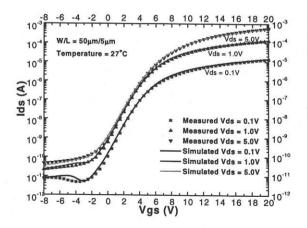


Fig. 3 Ids-Vgs characteristic of an n-channel poly-Si TFT. Markers are measured data. Lines are 2-D simulation results.

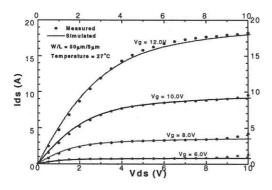


Fig. 4 Ids-Vds characteristic of an n-channel poly-Si TFT. Markers are measured data. Lines are 2-D simulation results.

3. Discussion and Analysis

In order to further investigate the importance of the grain boundaries at different interfaces, we simulated the characteristics of the poly-Si TFT by changing the DOS of the grain boundaries at different interfaces (Fig. 5, Fig. 6, and Fig. 7). The dimension of the poly-Si TFT is remained the same. The simulation results revealed that an increase of the poly-Si/gate oxide interface DOS causes a tremendous decrease of the ON- and subthreshold currents, thus, a reduction of the fieldeffect mobility and an increase of the subthreshold slope. The increase of poly-Si/gate oxide interface states also retards the onset of strong hole carrier accumulation in the channel region at negative Vgs bias, while the off-current is almost unaffected for Vds \leq 5V. It is also demonstrated that the poly-Si/buffer oxide interface DOS has a small influence on the ONand subthreshold currents. However, an increase of the poly-Si/buffer oxide interface traps can result in an increase of the OFF-current due to relatively larger density of the generation-recombination (G-R) centers created at the bottom interface near the drain region. Finally, we have established that the increase of the inter-grain boundary traps will result in not only a decrease of the ON- and subthreshold currents but also in an increase of the OFF-current.

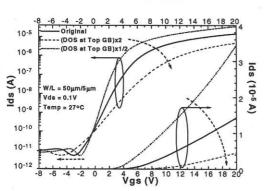
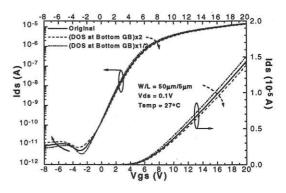



Fig. 5 Effect of DOS at the top grain boundary, i.e. the poly-Si/gate oxide interface, on poly-Si TFT characteristics.

Fig. 6 Effect of DOS at the bottom grain boundary, i.e. the poly-Si/buffer oxide interface, on poly-Si TFT characteristics.

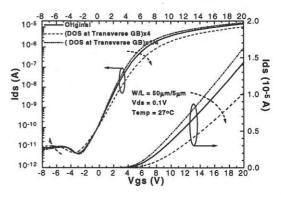


Fig. 7 Effect of DOS at the transverse grain boundary, i.e. the inter-grain interface, on poly-Si TFT characteristics.

4. Conclusions

For a 1000Å thick poly-Si TFT, it has been demonstrated: (i) ON-state and subthreshold behaviors of poly-Si TFTs can be mainly controlled by DOS at the poly-Si/gate oxide interface and inter-grain boundaries; and (ii) the OFF-state TFT behavior is dominated by the DOS at the inter-grain boundaries and poly-Si/buffer oxide interface. Thus, to improve the ON-state and subthreshold performance of poly-Si TFTs, it is necessary to reduce the poly-Si/gate oxide interface states and the inter-grain boundary states. The reduction of the inter-grain boundary states and the poly-Si/buffer oxide interface states will improve the OFF-state behavior of the poly-Si TFTs.

Acknowledgments

We would like to express special thanks to the support by the Center for Display Technology and Manufacturing at the University of Michigan, U.S.A.

References

M. D. Jacunski, M. S. Shur, and M. Hack, *IEEE Trans. Electron Devices*, 43, p. 1433, 1996.
H. Chern, C. Lee, and T. Lei, *IEEE Trans. Electron Devices*, 42, p. 1240, 1995.
G. A. Armstrong, S. Uppal, S. D. Brotherton, and J. R. Ayres, *IEEE Electron Device Lett.*, 18, p. 315, 1997.
F. Hayashi, H. Ikeuchi, M. Kitakata, and I. Sasaki, *IEDM Tech. Dig.*, p. 501, 1993.