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1. Introduction

Polycrystalline silicon (poly-Si) thin-film transistors
(TFTs) are actively studied by different laboratories
for its potential use in the SRAM and large-area
applications such as the active-matrix liquid crystal
displays (AMLCDs) and x-ray image sensors. The
main drawback of poly-Si TFTs in comparison with
the crystalline silicon (c-Si) MOSFETs is the
existence of the grain boundary states within the
active region of poly-Si TFTs that can cause a lower
field-effect mobility, a higher subthreshold slope and
a higher leakage current. Thus, it becomes the most
important issue to investigate how the grain boundary
states at different interfaces affect the ON-state,
subthreshold, and OFF-state characteristics in order to

optimize the current-voltage behaviors of poly-Si
THETs

2. Simulation Model and Experimental Results

In order to analyze the conduction mechanisms of
poly-Si TFTs, there have been several models
proposed by different authors[1]-[4]. However, those
models neglect the poly-Si/gate oxide interface states
(top grain boundary states) and the poly-Si/buffer
oxide interface states (bottom grain boundary states),
and they can be used to explain only the TEFT ON-
state or subthreshold behavior.

In this paper, we present a two-dimensional (2-D)
numerical model that can explain the current-voltage
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Fig. 1 Density-of-states (DOS) distribution at the grain

boundary and in the grain used for 2-D simulation.

characteristics of poly-Si TFTs. This model is based on
DOS at the poly-Si/gate oxide interface, poly-Si/buffer
oxide interface and inter-grain boundary (transverse
grain boundary) as well as the low intra-grain defects.
The energy distribution of DOS for all the defects is
given by the commonly accepted double exponential
expression (Fig. 1). A 1000A thick n-channel poly-Si
TFT prepared by solid-phase-crystallization (SPC)
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Fig. 2 Cross-section of 1000A poly-Si TFT (not to scale)
used in this modeling.

process with an average grain size of 0.51um was used
in this work (Fig. 2). The simulated characteristics
(ON-state, subthreshold and OFF-state characteristics)
of the poly-Si TFT show a very good agreement with
the measured data as seen in Fig. 3 and Fig, 4.
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Fig. 3 Ids-Vgs characteristic of an n-channel poly-Si TFT.
Markers are measured data. Lines are 2-D simulation results.
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Fig. 4 Ids-Vds characteristic of an n-channel poly-Si TFT.
Markers are measured data. Lines are 2-D simulation results.

3. Discussion and Analysis

In order to further investigate the importance of the
grain boundaries at different interfaces, we simulated
the characteristics of the poly-Si TFT by changing the
DOS of the grain boundaries at different interfaces (Fig.
5, Fig. 6, and Fig. 7). The dimension of the poly-Si TFT
is remained the same. The simulation results revealed
that an increase of the poly-Si/gate oxide interface DOS
causes a . tremendous decrease of the ON- and
subthreshold currents, thus, a reduction of the field-
effect mobility and an increase of the subthreshold
slope. The increase of poly-Si/gate oxide interface
states also retards the onset of strong hole carrier
accumulation in the channel region at negative Vgs
bias, while the off-current is almost unaffected for Vds
< 5V. It is also demonstrated that the poly-Si/buffer
oxide interface DOS has a small influence on the ON-
and subthreshold currents. However, an increase of the
poly-Si/buffer oxide interface traps can result in an
increase of the OFF-current due to relatively larger
density of the generation-recombination (G-R) centers
created at the bottom interface near the drain region.
Finally, we have established that the increase of the
inter-grain boundary traps will result in not only a
decrease of the ON- and subthreshold currents but also
in an increase of the OFF-current.
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Fig. 5 Effect of DOS at the top grain boundary, i.e. the poly-
Si/gate oxide interface, on poly-Si TFT characteristics.
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Fig. 6 Effect of DOS at the bottom grain boundary, i.e. the

poly-Si/buffer oxide interface, on poly-Si TFT characteristics.
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Fig. 7 Effect of DOS at the transverse grain boundary, i.e. the
inter-grain interface, on poly-Si TFT characteristics.

4. Conclusions

For a 1000A thick poly-Si TFT, it has been
demonstrated: (i) ON-state and subthreshold behaviors
of poly-Si TFTs can be mainly controlled by DOS at the
poly-Si/gate oxide interface and inter-grain boundaries;
and (ii) the OFF-state TFT behavior is dominated by the
DOS at the inter-grain boundaries and poly-Si/buffer
oxide interface. Thus, to improve the ON-state and
subthreshold performance of poly-Si TFTs, it is
necessary to reduce the poly-Si/gate oxide interface
states and the inter-grain boundary states. The reduction
of the inter-grain boundary states and the poly-Si/buffer
oxide interface states will improve the OFF-state
behavior of the poly-Si TFTs.
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