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single-Electron Tunneling in Nanocrystalline silicon

The development of silicon integrated circuits has been

put fonrard by miniaturization using advanced lithography
technologies. According to the technology roadmap[l], this

tendency will continue until 2010, when the design rule be-

comes 50nm and 64Gbit DRAN4 is projected. Further minia-
turization will lead to problems of increased leakage current

due to quantum mechanical tunneling effect, and that of quan-

tumnoise, orfluctuationof device characteristics since onty a
few electrons panicipate in device operation. In nanoscale

devices, it is essential to control quantum effects. Tintreling
phenomena should be suppressed, for example, by means of
Coulomb blockade effect[2], which provides a novel device
principle zuitable for a situation having only a few electrons.

A paradigm shift is also required for the method of
nanostnrcture fabrication Lithography may no longerbe the

unique method for the fabrication of nanostnrctures uniformly
and economically. Self-organized systems employing the ba-

sic understanding of the nature of crystal growth are emerg-

ing instead. As for materials, compound semiconductors have

been widely investigated for quantum effect devices. How-
eve4 silicon is preferable onthe basis of accumulated knowl-
edge of process technologres.

Researchers at Hitachi have successfully observed single

electron tunneling characteristics at room temperature from
devices made of polycrystalline silicon[3]. They also demon-

strated operation of single-electron memory integrated cir-
cuits[4,5] using the same material.

However, issues such as synthesis of silicon quanhrm dots

with a precise control of size, position and interface states re-

main critical, thus we have investigated fabrication of
nanocrystalline silicon (nc-Si) using plasma prccesses and ob-

served single electron tunneling characteristics.

Nanocrystalline silicon quantum dot structures with size

less than l0nm and a very small spread of size (lnm) have

been fabricated by very-high-frequency ( 144MHz) plasma de-

composition of silane and coalescence of radicals[6-S]. The
principle idea for the formation of uniform structure is the

c-2-1

separation of the nucleation and the crystal growth processes.

We have introduced into a silane plasma a hydrogen gas pulse

that enhances the nucleation of nc-Si particles. The nuclei grow

in size in the silane plasrna during the offstate of trydrogen gas

supply. The next hydrogen gas pulse forces nc-Si particles

grown in the previous cycle out of the plasma cell into the

deposition chamber and the next nucleation of nc-Si occurs

simultaneously. The growth rate is also enhanced by increas-

ing plasma excitation power, pressure and use of an Ar dilu-

tion gas.

Nanocrysalline silicon particles canbe deposited at room

temperature onto many kinds of substrate such as carbon

microgrids for TEM measurements, quartz for photolumines-

cence measurementq [9] and thermal oxidized silicon with pat-

terned polycrystalline silicon electrodes for electrical measure-

ments.

Natural oxide which covers the surface of nc-Si plays very

important roles in the characteristics of nc-Si. First, the oxide

serves as a potertial barier which controls charge, energy qum-

ttzation, and tunneling current. Second, the oxide passivates

the zurface dangling bonds resulting in reduction of electron

traps and enhancement of luminescence efficiency. Third, the

oxide serves as glue for nc-Si to fix to the substrates. Further

reduction of nc-Si dot size can be implemented by oxidation

and etching in oxygen with various pressures and tempera-

tures.

Although nc-Si particles distribute randomly, electro des

patterned by EB lithography can be designed such that nc-Si

position is not critical. In additiorU the position of nc-Si par-

ticles canbe manipulated by AFM tip while observing the im-

age. We have also found that nc-Si particles are depositedpref-

erentially at the steps of substrate surfaces[8].

Electrical properties of a single dot [0] and an array of
multiple dots of nc-Si were evaluatedfll]. Electron beam li-
thography with RD2000N negative resist and dose correction

technique for proximity effect reduction followed by ECR re-

active ion etching made possible formation of SOI layer elec-

trodes having separation between I 0-20nm. Nanocry stalline

Shunri Oda, Amit Dutta, S-P. Lee, Y. Hayafune, S. Hara, K. Nishiguchi, B.J. Hinds and S. Hatatani
Research Center for Quantum Effect Electronics, Tolryo hutitute of Technology,

O-Okayama, Meguroku, Tolcyo 152-8552, Japan

Phone : +8 I -3 -5764-3 048, Fax: +8 I - 3 -57 3 4 -3 56 5, E-Mail : soda@pe.titech. ac jp

66



silicon dots were deposited by the plasma process onto the

electrodes and coated by a PEC\iD SiO2 film. The electrodes

were dopedto 10tecm-3 by ion-implantation. Top gate electrode

was prepared with gate oxide thickness of 20nm. Coulomb

blockade of as large as 0.9V was observed in I-V characteris-

tics measured at various temperatures. Zero point shift found

in I-V characteristics may be due to the background charges. A
small Coulomb island and multiple tunnel junction stnrcture

were fabricatedby EB processes. Atrysteresis was observed in

I-V characteristics, suggesting multiple transport path and can

be applied to memory devices.

In order to avoid complexity associated with multiple dots,

we measured transport properties of individual surface oxi-

dized nc-Si particles. The measurements were performed us-

ing AFM with conductive tips in air at room temperature[0].

The grain size and the position of the nc-Si were directly ob-

served by AFM. The measured I-V characteristics show

staircaselike features. The period of the staircase increases with

decreasing nc-Si grain size, which is consistent with a single

electron chargrng effect inthe nc-Si. Since the AFM measure-

ment is not possible at low temperatures and exposure to am-

bient results in sability problem, we prepared samples having

nanoscale holes in oxide on Si substrates and deposited nc-Si

panicles in the holes. Polysilicon electrode was coaGd ontop

of the nc-Si dots. The current suppression due to Coulomb

blockade was observed inI-Vcurves of ttrese samples.

These results suggest that single electron tunneling devices

based on silicon quantum dots are promising for future

ultralarge scale integrated circuits.
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