
l. Introduction
One of the challenges in nanoelectronics is to develop

information processing systems that utilize quantum
mechanical effects. Analog computation using quantum
structures is a promising architecture for information
processing in nanoelectronics.l) This paper proposes an
analog-computation system using the quantum-dot spin glass.

Analog computation is a processing method for solving a
mathematical problem by applying an analogy of a physical
system to the problem. To implement analog computation,
we must prepare an appropriate physical system and use its
physical quantity to represent each problem variable. If the
mathematical relation between the physical quantities are
analogous to those of the problem, then we can find the
solution to the problem by observing the behavior of the
system and measuring the physical quantities.

Spin glass is a kind of ferromagnetic-antiferromagnetic
mixture.2) There is competition between the ferromagnetic
and antiferromagnetic interactions in the spin glass. This
property may make it possible to construct analog
computation system that solves combinatorial optimization
problems.3) In practice, however, analog computation that
uses spin glass cannot be implemented because it is difficult
to control the antiferromagnetic and ferromagnetic
interactions in the spin glass.

In this paper we propose a novel analog-computation
system using Enntum-dot spin glass. We describe the spin-
glassJike behavior in a two-dimensional (2D) array of
qwmtum dots in Section 2, and apply an analogy of the
quantum-dot spin glass to a combinatorial optimization
problem in Section 3. We will demonstrate that the spin glass
can perform analog computation.

2. Quantum-Dot Spin Glass
Technological advances have enabled us to fabricate an

array of quantum dots. If an array is designed well, quanturn-
dot spin glass can be fabricated. lrt us consider a 2D
anangement of quannun dots that are occupi.d by single
electrons coupled to each other by strong correlation
interaction. We can analyze the magrretic property of the
quanhrm dot array given by the extended Hubbard model:
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where c*o+ (c*o) is the creation (annihilation) operator for an

electron at the quantum dot k with spin q zp, o, is the

number operator of the electron for the quanturn dot k and
spin q, /1i is the overlap integral that represents the interdot
coupling between two quantum dots k and j; Upi is Coulomb

c-4-4

repulsion between the electrons at the k- and j-th dots; and
U is the charging energy for a single quantum dot.
We first calculated the low-energy eigenstates of two

electrons in two-dot and three-dot systems. Figure L shows
the dependence of the singlet and triplet orbital levels on the
amplitude of the overlap integral /. The diameter of the
quanfum dot is assumed to be 2 nrn and the dielectric
coefficient to be 10. The ground state of the two-dot system
corresponds to the singlet (antiferromagnetic) state, in
which each dot is occupied by one electron and the spins of
the two electrons are antiparallel, as shown in Fig.la. The
exciting state is the triplet state in which the spins of the
two electrons are parallel. Thus, we found that the exchange
interaction coefficient ,I is negative and equal to half of the
energy difference between the singlet and triplet states. The
value of l"/l increases as the overlap integral increases. In the
case of the three-dot system, owing to the Coulomb
repulsion, the two electrons occupied the two dots in the
left and right sides. The ground state of the three-dot system
corresponds to the triplet (ferromagnetic) state, in which
the spins of the two electrons are parallel (Fig.lb). The
exciting state is the singlet state. "I is positive. Though the
central dot in the three-dot system is not occupied by un
electron, it plays an important role in the ferromagnetic
interaction.
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Fig. 1. Dependence of energy levels of ground states on
t intwo-dot (a) and three-dot (b) systems.
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Next we designed a 2D array of quantum dots by mixing
two-dot (antiferromagnetic interaction) and three-dot
(ferromagnetic interaction) systems. The aray consists of 20
quanturn dots and 16 electons. We analyzed the ground state
of the quantum-dot anay using the Monte-Carlo simulation
method.a) Figure 2 shows the simulated ground state of the
quanhm-dot array. There is competition between the
ferromagnetic and antiferromagnetic interactions. in the
quantum-dot array. Because of the competition, no single
configuration of the spins is uniquely favored by all the
interactions. For elnmple, the energy of the array does not
change even if the quantum dot A takes the spin polarization
represented by the iurow that is put in a parenthesis. This is
called as "frustration". The result indicates that the quantum-
dot aray shows the spin glass behavior.

k and j quantum dots, and "/p3 is the exchange interaction
coefficient between the spins of those electrons.

Figure 3c shows the typical development of the system
energy for the quantum-dot spin glass. In the initial
arrangement, the parallel electron spins in the quantum dot
array at higher energy. Then the system energy decreases
with changing eigenstate. Finally the spin system reaches

one of its ground states. The ground state gives one of the
optimal solutions to the max cut problem. The results show
that the quantum-dot spin glass can perform analog
computation.
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Fig.2. Simulated ground state of quantum-dot array

3. Analog Computation
We tried mapping combinatorial optimization problems on

the quanturn-dot spin glass. Figure 3 shows an example of a
max cut problem and the corresponding quantum-dot spin
glass. Given a five-endpoint graph with positive weights on
six branches, the max cut problem is defined as the problem
of finding a partition of the graph into two disjoint groups
such that the sum of the weights of the branches that have
two endpoints in two groups, respectively, is maximal.

To solve this problem, we constructed a quantum-dot spin
glass (Fig. 3b) by choosing appropriate exchange interaction
coefficienc Ji between the electrons (for the fabrication
technique, see Ref. 5). We defined that the "up" polarization
of the spin represents the endpoint in group I and "down"
represents the endpoint in group 0. The energy function of
the spin glass is analogous to the cost function of the max
cut problem. Consequently, one of the optimal solutions can
be obtained as long as the spin glass converges in its grorurd
sCate.

We analyzed the ground state of the spin glass by the
following Heisenberg model,

H=-2 > /kjsk.sj ,
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(c) Monte Carlo time
Fig.3(a) An example of a max cut problem; (b) a
corresponding quantum-dot spin glass; and (c) one
optimal solution to the max cut problem

4. Conclusions
We propose a novel analog-computation system using

quantum-dot spln glass. We constnrcted a two-dot
(antiferromagnetic interaction) and threedot (ferromagnetic
interaction) system mixture. The simulated result indicates
that the quantum-dot array shows spin glass behavior. We
then mapped a max cut problem onto a quantum-dot spin
glass and found its optimal solution. The results
demonstrate that the quantum-dot spin glass can perform
analog computation.
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where Sg and S1 are spin polarizations of the electrons at the


