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1. Introduction
'We present an analytical continuum model of
collective behavior in the chatge disttibution in a

coupled afiLy of nanostructures, fot single electron
tunneling in the high-bias/elastic tunneling tegime.
The tesults of the model sugest that chatge density
oscillations of shot spatial wavelength petsist longet
than those of long wavelength. Such chatge
distibutions and their lifetimes might be measutable
by scanning ptobe microscopic techniques. This
btings new insights to help us to the long-sought
goal of extracting computational functions from
collective behavior of nano electronic arrays.

2. Bacl<ground
Recently, progress was made in the non-lithogtaphic
fabicaion of close-packed nanostructure attays,
which exhibit single-electron chatging effects[l].
Due to theit potential applications in novel optical
devices or nanoscale electronic circuits, it is of
intetest to study the large scale electtonic ptopenies
of such nano-afrays. Howevef, conventional Monte-
Catlo techniques used fot individual tunneling
junctions or small circuits 

^te 
not feasible for an 2D

affay of -1.010 coupled junctions. Thus, a new
anahltacal approach was tequired.

Figute 1. Schematic of the model system. The
islands ate capacitively coupled to one anothet by
capacitance C' and to the electrodes by tunnel
junctions '1., and 2.

rilfle sought to model the behavior of these arrays on
a macroscopic scale, using the small-scale
chatactetistics of the individual nanostructures as

parametets fot the mactoscopic model. Fot metal
wites, the sctee.irg length is shott, and a neatest-
neighbot approximation is appropriate. The

coupling between wires was thus modeled by 
^capacitance between the "islands ".

3. Derivation of the continuum model
Fitst-ptinciples afguments suggest th^t neafest-
neighbot coupling yields an exponential potential
change with distance AV($ or AV, fot an electron
added to an island e; this was confitmed by self-
consistent Monte-Cado calculations on a long arfiy
of coupled double junctions[z]. These potential
changes conttibute to AE, the net energy change
seen by the tunneling electron.

LEik -te(Vo+LVJ T+e\n,LV,, (1)
j

In (1), V ! is the pte-tunneling potential across

iunction k of wite i, LV, is the potential shift of
witeT due to an excess electron on wire i, and n, is
the numbet of electtons on wire7, The slgns denote
tunneling onto (-) o. off the island (+).

In tutn, AE govetns the :ate of electton tunneling
thtough the conventional exptession

I,o=#' etR a)

which applies to elastic tunneling atT=0, where no
electton energy is transfetted to excitations in the
circuiq or to the lattice[3].

The disctete model is inconvenient for an analytical
apptoach, and is teplaceable with a continuum
model. The summation becomes an integral

LE(r) = J*Or exp(-lr + 6|/ aofu? + 6)dA (3)

whete 0, ir the voltage change seen on an island
with one added electron. Eqtt. (3) is the energy
change fot an electton tunneling into the al.ray at
position 4 assuming that a, is small.
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A,E(r) = (eaoftoxl - Zao' frl' n(r)

as the exact sum of the seties. This tequites

o^, 
d'ry(!,t) 

< n?,t)wo 
ar2

for the seties to convetge.

The island electton density is govetned by
tunneling tate thtough each iunction in
following way

In otdet to petform the integral, we exPand n(*6)
in seties and integtate tetm by tetm, yielding

The terms are spatial waves which decay in time, but
with a wavevectot-dependent time constant. This
suggests that tapidly-vatying chatge distdbutions
petsist longet than more gtadually vatying
distributions. An cutoff of ail is established fot the
summation over kby the convergence conditio" (6).

Figute 3. Plot of log(n/ no) vs. uravevector A up to
the wavevectot cutoff, beginning with unifotm
pettutbatiott,c0 The curves ate fot diffetent times

ftom t=0 (,€ -axis) to t=2'L0-10 (lowest cutve)'
(patametets: Rr=R =106 d2, Cr=Cr=l.O-tu D

4. Conclusions
'We have desctibed a continuum model of coupling
and collective behaviot in nanostflrctute arrays. The
model ptedicts spatial-wavevector dependent
evolution of chatge distdbutions in the auays which
could be detected thtough scanning ptobe
techniques.
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where fot simplicity we set T=0 and thus need only

use the forwatd rates. Il and T, arc detetmined by

equations (3) and (5), and the complete rate
equation is given by

(r- u' !'^lh!'') - ct - crn(r,t) (7)wo ar" at
whete c, = (Ho - Q) t ZeR, - (Vro - Q) | ZeR" and

c, = (aoQo lze)(&-t + R -t), V ,o is the voltage

across junction i (1.,2) in the absence of chatges on
the island. Eqn. (7) assumes continuity of n(r,t) in
time, and is applicable only over time scales in
which many single-electton tunneling events occur.

3. Solution of the equation
Equation (7) has a steady state solution in which
thete is no spatial vadation in r(r,t). This solution
may be subttacted out to examine the spatial and
temporal behaviot of pettutbations.

The petutbation equation is solved by ^ ttia|
solution of the form n(r,t) - A(t)exp(iftr). Ftom
this we obtain A(t), and the genetal solution
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n(r,t) =}tr"*peffi)r* . (B)


