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1. Introduction

We present an analytical continuum model of
collective behavior in the charge distribution in a
coupled atray of nanostructutes, for single electron
tunneling in the high-bias/elastic tunneling regime.
The results of the model suggest that charge density
oscillations of short spatial wavelength persist longer
than those of long wavelength. Such charge
distributions and their lifetimes might be measurable
by scanning probe microscopic techniques. This
btings new insights to help us to the long-sought
goal of extracting computational functions from
collective behavior of nanoelectronic arrays.

2. Background

Recently, progress was made in the non-lithographic
fabrication of close-packed nanostructure arrays,
which exhibit single-electron charging effects[1].
Due to their potential applications in novel optical
devices ot nanoscale electronic circuits, it is of
interest to study the large scale electronic properties
of such nano-arrays. However, conventional Monte-
Catlo techniques used for individual tunneling
junctions or small circuits are not feasible fot an 2D
array of ~10'" coupled junctions. Thus, a new
analytical approach was required.
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Figure 1. Schematic of the model system. The
islands are capacitively coupled to one another by
capacitance C,, and to the electrodes by tunnel
junctions 1 and 2.

We sought to model the behavior of these arrays on
a macroscopic scale, using the small-scale
characteristics of the individual nanostructures as
parameters for the macroscopic model. For metal
wires, the screening length is shott, and a nearest-
neighbor approximation is apptopriate. The

coupling between wires was thus modeled by a
capacitance between the “islands”.

3. Derivation of the continuum model
First-principles arguments suggest that nearest-
neighbor coupling yields an exponential potential
change with distance A/(x) or A1} for an electron
added to an island 7; this was confirmed by self-
consistent Monte-Catlo calculations on a long array
of coupled double junctions[2]. These potential
changes contribute to AE, the net energy change
seen by the tunneling electron.

AE =1e(VEFAV,)FLe) nAV; (1)
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In (1), V' is the pre-tunneling potential across
junction £ of wire 7, A/, is the potential shift of
wire 7 due to an excess electron on wire 7, and #, is
the number of electrons on wire . The signs denote
tunneling onto (-) or off the island (+).

In turn, AE governs the rate of electron tunneling
through the conventional expression
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which applies to elastic tunneling at T=0, where no
clectron energy is transferred to excitations in the
circuit, or to the lattice[3].

The discrete model is inconvenient for an analytical
approach, and is replaceable with a continuum
model. The summation becomes an integral

AE() = [~ gyexp(r+ 8]/ an(r+8)ds  (3)

where @, is the voltage change seen on an island
with one added electron. Eqn. (3) is the enetgy
change for an electron tunneling into the array at
position 7, assuming that g, is small.
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In order to petform the integral, we expand (r+6)
in series and integrate term by term, yielding

2
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as the exact sum of the series. This requires
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for the series to converge.

The island electron density is governed by the

tunneling rate through each junction in the
following way

on(r,t)

7 =T, (n(r,0),V) =T, (n(r,1),V) (6)

where for simplicity we set T=0 and thus need only
use the forward rates. I; and T, ate determined by

equations (3) and (5), and the complete rate
equation is given by
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across junction 7 (1,2) in the absence of charges on
the island. Eqn. (7) assumes continuity of #(5#) in
time, and is applicable only over time scales in
which many single-electron tunneling events occut.
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3. Solution of the equation

Equation (7) has a steady state solution in which
there is no spatial vatiation in # (4. This solution
may be subtracted out to examine the spatial and
tempotal behavior of perturbations.

The petturbation equation is solved by a trial
solution of the form n(r,t) = A(t)exp(ikr). From
this we obtain .4(#), and the general solution

n(r,t) = ZA cxp( 2k2) e ®)
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The terms are spatial waves which decay in time, but
with a wavevectot-dependent time constant. This
suggests that rapidly-varying charge distributions
petsist longet than more gradually varying
distributions. An cutoff of 4,” is established for the
summation over £ by the convergence condition (6).
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Figure 3. Plot of log(#/n;) vs. wavevector £ up to
the wavevector cutoff, beginning with uniform
pertutbation 7, The cutves are for different times
from #=0 (k-axis) to #=2+10"° (lowest curve).
(patameters: R,=R,=10° Q, C=C,~10"F)

4. Conclusions

We have desctibed a continuum model of coupling
and collective behavior in nanostructure arrays. The
model predicts spatial-wavevector dependent
evolution of charge disttributions in the arrays which
could be detected through scanning probe
techniques.
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