High Current/gm Self-Aligned PJ-HFET of Completely Enhancement-Mode Operation

K. Nishii, M. Nishitsuji, T. Yokoyama, S. Yamamoto, A. Tamura, and K. Inoue

Electronics Research Laboratory, Matsushita Electronics Corporation,

3-1-1 Yagumo-Nakamachi, Moriguchi, Osaka 570-8501, Japan

Phone: +81-6-906-4922, Fax: +81-6-907-2640, E-mail: nishii@oerl.src.mei.co.jp

1. Introduction

For cellular phones, power amplifiers are required to operate at low voltages with high efficiencies. The Id-Vgs curves for three different types of HFETs are shown in Figure 1. Although power amplifiers using depletion-mode Schottky Gate HFETs (SG-HFET) have high drain current characteristics and high efficiencies, they require two voltage supplies both negative and positive for operation. For the single supply voltage operation, slightly depletion-mode SG-HFETs have been employed so far[1-2]. These depletionmode SG-HFETs, however, require drain switch because their drain currents in the standby mode are too high. Therefore, completely enhancement-mode SG-HFETs are strongly demanded to eliminate the extra circuit for the negative voltage supply and also a drain switch. The problem for the completely enhancement-mode SG-HFETs is that a large forward gate voltage (Vgs) swing cannot be realized because of their low built-in voltage.

In this work, we report the first successful fabrication of self-aligned P+-GaAs Junction HFETs (PJ-HFETs) of completely enhancement-mode operation capable of a larger Vgs swing more than 1.5V by exploiting the higher built-in voltage of p/n junctions.

2. Device and Processing

A schematic cross-section of the epitaxial structure of the ion-implanted self-aligned PJ-HFET is shown in Figure 2. The structure consists of pseudomorphic double heterojunction N-AlGaAs/InGaAs/N-AlGaAs layers and top p+-GaAs layer. The doping level of the p+-GaAs layer was 2.0×10^{19} cm⁻³. The AlAs mole fraction in the AlGaAs layers was 0.25 and the doping level of Si in the N-AlGaAs layers was 2.0×10^{18} cm⁻³. The In mole fraction in the InGaAs layer was 0.2. The WSi metal was formed by DC sputtering and reactive ion etching. The unnecessary p+-GaAs layer was etched off using WSi as a mask. The n+ regions self-aligned to WSi were formed by Si ion implantation into the epitaxial layers. Si implantation was performed at an energy of 30 keV with a dose of 5×10^{13} cm-2. In order to obtain high activation for Si implanted layers without degrading the characteristics of the unimplanted regions, we adopted hot-plate annealing using a graphite heater and the annealing was performed at 750 $^\circ C$ for 30 seconds in a hydrogen atmosphere with a SiO₂ capping film. This condition was suitable for minimizing both the sheet resistance of the implanted layer and the WSi/p+-GaAs contact resistance. Following the high temperature anneal, the devices were isolated by boron implantation. Ohmic contacts were formed by evaporation of AuGe/Ni/Au. Finally, Ti/Au was deposited as a gate overlayer to reduce the overall gate resistance and interconnect metal.

Fig. 1 Id-Vgs curves for three different types of HFETs

Fig. 2 Cross sectional view of the self-aligned PJ-HFET

3. Characteristics

From the measured diode forward I-V characteristics for the J-HFET and the WSi-gate SG-HFET, the barrier height was 1.12 eV for PJ-HFETs and 0.81 eV for SG-HFETs. The ideal factor was almost same (1.14) for both devices. Because of p/n junction, the barrier height of PJ-HFETs was higher than that of SG-HFETs by about 0.3 eV.

Figure 3 shows the typical Ids, gm-Vgs characteristics of a 0.8µm-gate PJ-HFET with 100µm gate width compared with 0.8µm-gate WSi-gate SG-HFET which has same threshold

voltage (Vth) as that of the PJ-HFET.

Vth of these HFETs determined by linear extrapolation of the square root of the drain current were about 0.2 V at Vds of 3 V. A high maximum drain current (IMAX) of 380 mA/mm at Vgs of 1.5 V was obtained in the PJ-HFET because of large voltage swing. On the other hand, the IMAX of the SG-HFET was 300mA/mm at Vgs of 1.0 V. The PJ-HFET exhibited a high maximum transconductance (gm_{MAX}) of 410 mS/mm at Vgs of 1.35 V as compared with that of the SG-HFET of 340 mS/mm at Vgs of 1.0 V due to the high barrier height of p/n junctions. The K-value of PJ-HFETs was 400 mS/Vmm and the drain-source leakage current was as low as 0.5 µA/mm at Vgs=0V. The source resistance was 2.6 Ω mm and the sheet resistance of n⁺ layer was 500 Ω/\Box . The typical gate-drain breakdown voltage was -10 V measured at a gate-drain current of 100 µA/mm. The Vth values for 35 devices across a 3 inch wafer were measured to confirm the uniformity of the device characteristics. The average Vth of 0.19 V and a standard deviation of 18.4 mV have been obtained.

Figure 4 shows input-output power performance of the PJ-HFET (Wg=3.2mm) together with the characteristics of adjacent channel leakage power ratio(ACPR), operation current(Id) and power added efficiency(PAE). Very low operating current of 99mA was achieved at Pout=21.5dBm with high PAE of 39.5% and low ACPR of -57.4 dBc operated with a single drain bias of 3.3V. Here, the idle current was 55mA and ACPR is measured at 600 kHz off center frequency of 1.9 GHz. The characteristics of this PJ-HFET satisfies the requirements for low current operation in the single voltage supply condition.

In the WSi-gate SG-HFET, Pout=21.5dBm was obtained for the device with larger gate width of 4mm and at higher operating current of 150mA with PAE of 28.0% and ACPR

Fig. 3 Comparison of Ids, gm vs Vgs characteristics of PJ-HFET and SG-HFET

of -56.4 dBC. These results show the superiority of PJ-HFETs over SG-HFETs which resulted from the larger gate voltage swing in PJ-HFETs.

Fig. 4 Input-output characteristics with ACPR , Id and PAE of the PJ-HFET (Wg=3.2mm),

Input Signal : $\pi/4$ shift QPSK (PHS mode)

4. Conclusion

We have developed high current and gm self-aligned PJ-HFETs of completely enhancement mode operation. By utilizing the merit of p/n junction, the barrier height of 1.12 eV has been obtained. The 0.8 μ m-gate PJ-HFET exhibited K-value of 400 mS/Vmm, gm_{MAX} of 410 mS/mm and I_{MAX} of 380 mA/mm with Vth of 0.2 V. Operated with drain bias of 3.3 V, the PJ-HFET demonstrated PAE of 39.5% with ACPR of -57.4 dBc at Pout =21.5 dBm and f=1.9 GHz. These excellent results suggest that the PJ-HFETs and its process are very suitable for the fabrication of GaAs power MMIC's operated with a single voltage supply.

Acknowledgment

The authors wish to thank Mr.M. Kazumura and Dr. D. Ueda for their encouragement throughout this work.

References

1) T. Yokoyama, T. Kunuhisa, M. Nishijima, S. Yamamoto, M. Nishitsuji, K. Nishii, M. Nakayama, and O. Ishikawa: 1996 *Proc.Int. Conf. on IEEE GaAs IC Symp.* 107-110

2) T. Kunihisa, T. Yokoyama, M. Nishijima, S. Yamamoto, M. Nishitsuji, K. Nishii, M. Nakayama, and O. Ishikawa: 1997 *Proc.Int. Conf. on IEEE GaAs IC Symp.* 33-36