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1. Introduction

The growth of two-dimensional heterostructures of
highly mismatched semiconductor systems by molecular-
beam epitaxy (MBE) has long been hindered by the for-
mation of three dimensional islands goverened by the
Stranski-Krastanov mechanism. The use of non-(001)
surfaces was recently proposed as a novel growth tech-
nique for solving this difficulty and in order to achieve a
two-dimensional growth for the heteroepitaxial system of
InAs/GaAs, which has a lattice mismatch of A = dag/ag
as large as 7%, (111)A surfaces were used [1]. Despite
of the larger lattice mismatch, the interfaces have been
confirmed to be atomically flat for both GaAs/InAs and
InAs/GaAs, and a network of misfit dislocations is con-
fined at the interfaces [2]. A similar two-dimensional
growth was also observed for the more highly mismatched
(A ~15%) heteroepitaxy of InSb on GaAs (111)A [3], and
this novel growth technique allows the use of much wider
combinations of semiconductor materials in the applica-
tion for heterostructure devices.

Our previous study showed that the Fermi level at
both InAs/GaAs and GaAs/InAs interfaces formed on
a (111)A substrate is pinned in the conduction band
of InAs probably due to the interface states caused by
the dislocation network [2]. The InAs/n-GaAs and n-
GaAs/InAs heterojunctions are, therefore, expected to
show similar vertical transport properties as those of
metal-semiconductor junctions. This interface property
is important for device applications because both polari-
ties of Schottky junctions (surface-anode type by InAs/n-
GaAs and substrate-anode type by n-GaAs/InAs) can
only be fabricated by the heteroepitaxy from semicon-
ductor materials.

We propose to apply double-Schottky-junction n-
AlGaAs/InAs/n-GaAs heterostructures formed on GaAs
(111)A substrates for thermionic-emitter hot-electron
transistors, as an example of device applications for this
novel MBE growth technique. This kind of hot electron
transistor has the advantage of having a low emitter-
base resistance compared with the tunneling hot-electron
transistor [4-7]. Room temperature operation of this kind
of transistor has been confirmed for a number of systems,
for example, a metal-base CoSiy/Si [8], an induced-base
GaAs/AlGaAs [9], and an AlSbAs/InAs/GaSb system
[10].

The AlGaAs/InAs/GaAs system proposed here has
the following advantages. First, the high-conduction-
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band discontinuity of more than 1.0 eV at the emitter-
base interface, which is much greater than that of
lattice-matched AlAs/GaAs systems, allows stable room-
temperature device operation. Second, the metal-
deposited InAs surface easily forms good Ohmic contacts
because the surface Fermi level is pinned in the conduc-
tion band. In addition, this system can be formed on a
GaAs substrate, where the majority of optical and elec-
trical devices has been fabricated. Finally, it only needs
As as column-V materials to make MBE growth much
easier, and does not have the problem of intermixing
column-V atoms [11]. We have successfully fabricated
novel hot-electron transistors and achieved fairly good
room-temperature operations.

2. Results and Discussions

The Schottky-barrier heights at the InAs/n-GaAs and
n-GaAs/InAs interfaces formed on GaAs (111)A sub-
strates were measured as 0.62 eV and as (.54 eV, respec-
tively, from the temperature-dependence of the current-
voltage characteristics [12]. This means that the base-
collector barrier is slightlly higher than the base-emitter
barrier, and that if the transistor was fabricated by n-
GaAs/InAs/n-GaAs heterostructures, it would have a
poor electron-transfer ratio. In order to improve the
transfer ratio, the n-AlGaAs graded layer was used as
the emitter leading to the injection of more hot elec-
trons into the collector regions than the n-GaAs/InAs/n-
GaAs structures. Figure 1(a) shows the fabricated de-
vice structure. The Al composition gradually changed
from 0.7 at the interface to 0. The top n-GaAs/AlGaAs
layer was selectively etched using an NH4OH solution and
the base ohmic contacts were made by the deposition of
TiAu on the InAs-thin films. Using Hall measurements,
we found the electron concentration in the n—-GaAs
layer which is similarly grown on a semi-insulating GaAs
substrate, to be 2x1017cm=3. In contrast to the elec-
tron concentration, we found the Si concentration to be
4x10'"cm~3 using SIMS measurements showing a large
carrier compensation by the accepter-site Si atoms. The
electron concentration in the nt-GaAs layer was more
than 1x10'®cm™3, which is also highly compensated.
For the comparison, the devices with n-GaAs/InAs/n-
GaAs structures were also fabricated. The InAs thick-
ness was chosen to be 15 nm and 40 nm. The room-
temperature sheet-resistance of the InAs films embed-



ded in the undoped GaAs layers was measured to be
3,000 ©2/sq. (15 nm) and 1,200 /sq. (40 nm).

Figure 1(b) shows the schematic diagram of the con-
duction band profile of this device. When a negative
bias is applied to the emitter relative to the base, the
emitter-base Schottky barrier is biased in the forward di-
rection. This injects hot electrons through the base and
into the collector. Figure 2 shows the typical common-
emitter characteristics obtained at room temperature
with a 15 nm-thick InAs film and a graded AlGaAs emit-
ter. The highest common-emitter current gain measured
in this device was # ~ 1.1 at the emitter-collector voltage
of 2.5 V. This current gain was reduced for the sample
with a thicker InAs film and/or GaAs emitter (Table 1.)
because of enhaced electron scattering in the base re-
gion and at the base-collector interface. Since the InAs
layer becomes highly resistive due to the quantum-size
effect when the thinckness is less than 10 nm [2], further
improvement in the current gain is difficult to achieve
by simply reducing the InAs thickness. It may be possi-
ble, however, to use higher emitter-base barriers with the
graded emitter with higher AlAs composition and also to
optimize the device structures.
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Fig.1 Fabricated structure of AlGaAs/InAs/GaAs hot
electron transistors (a) and a schematic diagram of the
conduction band profile (b).

3. Conclusion

Double-Shottky-junction AlGaAs/InAs/GaAs het-
erostructures were applied to fabricate thermionic-
emitter hot-electron transistors. =~ The clear room-
temperature operation with a common-emitter current
gain # of 1.1 was confirmed. This room-temperature
operation for thermionic-emitter hot-electron transistors
clearly demonstrates the potential device application of
the novel growth technique, which drastically improve
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the film quality in highly mismatched heteroepitaxy.
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Fig.2: Typical common-emitter characteristics obtained
at room temperature. The InAs thickness is 15 nm and
the emitter consists of the graded n-AlGaAs.

Emitter Material InAs thickness (nm) B

graded n-AlGaAs 15 1.1

graded n-AlGaAs 40 0.42
n-GaAs 15 0.18
n-GaAs 40 0.06

Table 1.: Common-emitter current gain 3 for different
InAs thickness and emitter layer composition.



