Fabrication of the Si/Al₂O₃/SiO₂/Si Structure by Using the O₂ Annealed Al₂O₃/Si Structure

Hirotsugu HORI, Fumitaka KONDO, Daisuke AKAI, Kazuaki Sawada and Makoto ISHIDA

Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan Phone: +81-532-44-6740 Fax: +81-44-6757 e-mail: ishida@eee.tut.ac.jp

1. Introduction

SOI wafers were used not only for the ULSI applications, but also for the other one such as sensors. Multi-stacked SOI structure have potential for these sensors and MEMS (Micro Electro Mechanical system) applications. However, it is difficult to obtain multi-stacked SOI structures using these fabrication methods such as SDB and SIMOX. SOI structures of double-heteroepitaxial Si/ γ -Al₂O₃/Si grown by LP-CVD,¹⁾ UHV-CVD²⁾ and Si₂H₆ gas-source MBE³⁾ were reported. The SOI structure with Al₂O₃ was applied to a high-temperature-operated pressure sensor⁴⁾.

There is the remained problem that Si top layer morphology of SOI structure fabricated by the UHV-CVD system depends on the Al_2O_3 layer thickness.⁵⁾ As Al_2O_3 thickness is more than 30 nm, the endurance voltage property is excellent, while Si top layer is rough. As Al_2O_3 thickness is less than 10 nm, Si top layer is smooth surface, while the endurance voltage property is not good.

In this work, the formation of the SiO₂ layer such as $Al_2O_3/SiO_2/Si$ structure in the interface between Al_2O_3 and Si was investigated to improve the problem of the insulation. Moreover, Si growth was carried out on the $Al_2O_3/SiO_2/Si$ structure. Then the high crystalline quality of SOI wafer was fabricated.

2. Si/Al₂O₃/SiO₂/Si Formation

Al₂O₃ and Si growth were carried out using the UHV-CVD system as reported previously.⁵⁻⁷⁾ Si/Al₂O₃/SiO₂/Si structure was prepared by the following fabricating sequence. (1) Al₂O₃ growth at a lower temperature of 900°C was performed on a 2 inches p-type Si(100)to get good surface morphology. (2) The wafer was annealed in O₂ atmosphere to fabricate the SiO₂ layer at the interface between Al₂O₃ and Si. Annealing was performed at 1000°C for 120 min. (3) To improve crystallinity of Al₂O₃ films, Al₂O₃ growth at a high temperature of 1000°C was performed on the Al₂O₃/SiO₂/Si structure. (4) Single-crystal Si(100) films were epitaxially grown on the Al₂O₃/SiO₂/Si structure by Si₂H₆ at 1000°C.

3. Results and Discussion

Figure 1 shows the AES depth profile of the sample with O2 anneal using a 15 nm thick Al2O3 films. In case of the O2 annealed one, SiO2 was observed at the interface between the Al2O3 layer and the Si substrate. Figure 2 shows the characteristics of leakage current. The 11 nm thick Al₂O₃ film had poor electric resistance (the endurance voltage was 10V), whereas the 11 nm thick Al₂O₃ films with 63 nm thick SiO₂ layer in the interface between Al₂O₃ and Si had good electric resistance (the endurance voltage was 50V). RHEED pattern of the Si layer on Al₂O₃/SiO₂/Si shows the streaky patterns shown in Fig3 (a), which indicates that the crystalline is good. Figure 3(b) shows the surface morphology of Si top layers with Al2O3/SiO2/Si. The thermal expansion coefficient of Si, Al₂O₃ and SiO₂ has the relation such as SiO₂<Si<Al₂O₃. The relaxation of the distortion by the SiO₂ layer in the interface between Al2O3 and Si was examined. The relaxation of the distortion may be improved by control of SiO₂ layer and Al₂O₃ film thickness. The defect density of Si top layer of Si/Al2O3/SiO2/Si structure decreased to a half compared with Si top layer of Si/Al₂O₃/Si structure. It is considered that this decrease may be caused by the effect of the relaxation of the distortion by the SiO₂ layer in the interface between Al2O3 and Si, but requires further study for clarification. Figure 4 shows characteristics of nMOS FET, and indicates electrical properties of the MOS FET as the same as that on Si substrate.

The high quality SOI wafers by this epitaxial growth enable to use for sensors and display devices with CMOS IC on the same chips. The CMOS fabrication process using this SOI structure as well as the SOI wafer fabrication process was studied, and the operation of the CMOS integrated circuits on it was demonstrated.

4. Conclusions

The formation of the SiO₂ layer in the interface between Al_2O_3 and Si to improve the insulation was carried out using O₂ anneal at 1000°C. As the result, Al_2O_3 /Si structure was changed to $Al_2O_3/SiO_2/Si$ structure in case of thin Al_2O_3 films. By the fabricating the $Al_2O_3/SiO_2/Si$ structure, the endurance voltage property was more excellent than Al_2O_3/Si structure from 10 V to 50 V. Moreover, Si growth was carried out on the $Al_2O_3/SiO_2/Si$ structure. The Si top layer morphology was very smooth. Then, the high crystalline quality of SOI wafer was fabricated, and good properties of MOS devices were obtained.

References

- M. Ishida, K. Sawada, S. Yamaguchi, T. Nakamura and T. Suzaki: Appl. Phys. Lett. 55 (1989) 556.
- 2) T. Kimura, A. Sengoku and M. Ishida: Jpn. J.

Appl. Phys. 35 (1996) 1001.

- Y.C.Jung, H.Miura, K.Ohtani and M.Ishida, J.Crst.Growth, 196(1998) 88.
- M. Ishida, Y. T. Lee, T. Higashino, H. Seo and T. Nakamura: Jpn. J. Appl. Phys. 34 (1995) 831.
- T.Kimura, H. Yaginuma, A. Sengoku. Y. Moriyasu and M. Ishida: Jpn. J. Appl. Phys. 37(1998) 1285.
- T. Kimura, H. Yaginuma, A. Sengoku. Y. Moriyasu and M. Ishida: Jpn. J. Appl. Phys. 36 (1997) 7126.
- T.Kimura, H. Yaginuma, A. Sengoku. Y. Moriyasu and M. Ishida: Jpn. J. Appl. Phys. 38(1999) 853.

Fig.1 AES depth profile of Al2O3/Si with O2 anneal.

Fig. 3(b) SEM of Si/Al2O3/SiO2/Si.

