Measurement of Copper Drift in Methylsilsesquioxane Dielectric Films

Seiji Mukaigawa¹, Takamaro Kikkawa¹, Tomoko Aoki², and Yasuo Shimizu²

¹Research Center for Nanodevices and Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8527 Japan Phone: +81-824-24-7879, Fax: +81-824-22-7185, e-mail: kikkawa@sxsys.hiroshima-u.ac.jp ² Tonen Corporation, 1-3-1 Nishiturugaoka, Irumagun, Saitama, 356-8505 Japan

1. Introduction

Copper (Cu) is a key material for future ultra-large scale integrated circuits (ULSI) because of its low resistivity and high electromigration resistance. Recently, Cu interconnects have been announced as a multilevel interconnect technology for ULSIs [1,2]. Cu interconnects with low-k dielectrics have more advantages to improve high-speed performance of ULSI [3,4]. Thermal diffusion of Cu into SiO₂ interlayer dielectric films is negligible during the fabrication process at temperatures below 450°C. However, the drift of Cu ions (Cu⁺ or Cu²⁺) occurs in the presence of an electric field at temperatures as below as 150°C from the Cu interconnect through SiO₂ to induce leakage currents and degrade devices [5, 6]. In order to understand the mechanism of Cu drift in the dielectric films and to identify Cu barrier requirements for future ULSI integration with low-k dielectrics, the extent of Cu-ion penetration in the dielectric films must be determined [7, 8]. This paper investigate Cu ion drift in methylsilsesquioxane (MSQ) low-k dielectric films using bias-temperature (BT) stress tests and capacitance-voltage (C-V) analysis. The C-V measurement can quantify dielectric charges in metal-insulator-semiconductor (MIS) systems since ionic or dielectric or interface charges affect surface inversion in the semiconductor substrate and thus modify the C-V characteristics such as flat-band shifts.

2. Experiment

In order to investigate Cu drift in MSQ low-k dielectric films, a Al/Cu/MSQ/SiO2/Si structure was fabricated as shown in Fig. 1. 100 nm thick SiO₂ films were formed by thermal oxidation of n-type Si substrates. Polysilazane precursor solution was spincoated on the oxidized Si wafers, and baked for 3 minutes at 150-250°C in the air (25°C, 50%RH), then cured for 1 hour at 400°C in nitrogen ambient, so that MSQ films were formed. Table 1 shows the properties of MSQ. Then, a 500 nm thick Cu film was deposited by DC magnetron sputtering on the MSQ film after baked for 30 minutes at 400°C. Then, a 100 nm thick Al film was deposited on the Cu film to prevent the oxidation of the Cu film surface during BT stress. A 500 nm thick Al film was deposited on the backside of the wafer to obtain an ohmic contact. Forming gas (H_2+N_2) anneal was carried out for 10 minutes at

350°C. Cu/Al dots with diameters of 2 mm were patterned by wet etching. The Cu gate electrode serves as a reservoir of Cu ions which can be injected into the underlying dielectric film when an electric field is applied. Al/Cu/MSQ/SiO2/Si capacitors were biased at elevated temperature ranging from 126 to 165°C to accelerate Cu-ion penetration into the MSQ film. A positive gate bias shifts the C-V curve horizontally in the negative direction. The C-V shifts were quantified by changes in the flatband voltage.

3. Results and Discussion

Figure 2 shows C-V characteristics of an Al/Cu/ MSQ/SiO₂/Si-substrate capacitor measured at room temperature, which was biased at 20V at 165°C for 2, 4 and 6 minutes, respectively. The amount of Cu⁺ charge drifted into the stacked MSQ and SiQ, films can be estimated from the measured flatband voltage, V_{FB}. V_{FB} can be expressed as follows.

$$V_{FB} = -\int_0^{d_1+d_2} \omega(x)\rho(x)dx$$

where,

(1) d_1 and d_2 are thicknesses of MSQ and SiO₂, respectively. $\omega(x)=x/\varepsilon_{MSQ}$ ($0\le x\le d_1$), $\omega(x)=d_1/\varepsilon_{MSQ}$ + $(x-d_1)/\varepsilon_{SiO2}$ ($d_1 \le x \le d_1+d_2$). $\rho(x)$ is a Cu ion distribution in the film. Assuming the Cu ions had drifted and accumulated at the SiO₂/Si interface, the Cu⁺ concentration per unit area, [Cu⁺] is

$$[Cu^{+}] = -C_{ILD} \bullet \Delta V_{FB}/q \qquad (2)$$

where C_{ILD} is the series stacked capacitance of SiO₂ and MSQ per unit area, ΔV_{FB} is a flatband voltage shift and q is the electronic charge. As BT stress time increases ΔV_{FB} becomes more negative, indicating more positive charge is introduced into the dielectric film. Dependence of BT voltage and temperature on ΔV_{FB} are shown in Fig. 3 and Fig. 4, respectively. ΔV_{FB} increased with increasing applied voltages and stress temperatures. The Cu⁺ drift rate in the MSQ dielectric film was calculated by eq. (2), and it was between the reported values in PECVD-SiO2 and PECVD-oxynitride [7].

4. Conclusion

Measurement of Cu drift in MSQ low-k dielectric films in the presence of an electric field was conducted using bias-temperature stress tests and capacitance-voltage analysis. It is found that Cu ions drift with stress time, voltage, and temperature. The Cu⁺ drift rate in a MSQ dielectric film was between the reported values in PECVD-SiO2 and PECVD-SiON.

Acknowledgement

The authors would like to thank Dr. K. Suzuki and Dr. S. Ohshita, NEC Corporation, for copper deposition.

References

[1] D. Edelstein et al., IEDM Tech. Dig.,(IEEE, New York), 1997, pp. 773-776.

[2] S. Venketesan et al., IEDM Tech. Dig., (IEEE, New York),1997, pp. 769-772.

[3] M. T. Bohr, IEDM Tech. Dig., (IEEE, New York),1995, pp. 241-244.

[4] D. Sylvester et al., Dig. Tech. Papers, Symp. VLSI Technol., (IEEE, New York), 1998, pp.42-43.

[5] J. D. McBrayer et al., J. Electrochem. Soc., vol. 133, no. 6, pp. 1242-1246, 1986.

[6] Y. Shacham-diamond et al., J. Electrochem. Soc., vol. 140, no. 8, pp. 2427-2432, 1993.

[7] A. L. S. Loke et al., IEEE Electron Devices Lett., vol. 17, no. 12, pp. 549-551, 1996.

[8] A. L. S. Loke et al., Dig. Tech. Papers, Symp. VLSI Technol., (IEEE, New York), 1998, pp.26-27.

Fig.1. Sample capacitor structure and measurement setup. Al(100nm)/Cu (500nm)/MSQ(4000nm)/SiO₂(100nm)/Si.

Table 1 Properties of MSQ

Structure	(CH ₃)SiO ₁₅
Dielectric Constant	2.5
Refractive Index	1.45
Density	1.2
Film Stress	$1.0 \times 10^{9} [dyn/cm^{2}]$

Fig. 2. C-V curves of MSQ capacitors stacked with SiO_2 as a parameter of BTstress time. BT stress condition is +20V Cu gate bias at 165°C in N₂.

Fig. 3. C-V curves of MSQ capacitors stacked with SiO_2 as a parameter of bias voltage. BT stress time is 10 minutes at 165°C in N_2 .

Fig. 4. C-V curves of MSQ capacitors stacked with SiO_2 as a parameter of temperature. BT stress condition is 20V for 10 minutes.