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Inhoduction
An embedded-DRAM-ASIC technology enables the

implementation of more functions on a single chip and is a generic
process technology for a system-on-a-chip (SoC) platform. In SoC,
high density memory and logic are recognized as number-one-
priority [1]. Also, low power, high speed, and cost are important
issues of SoC when considering process architecture.

In this paper, we discuss the implementations of the high density
and low power 0.l6um embedded DRAM ASIC process. To achieve
high density the self-aligned contact (SAC) is a key technology to
increase the DRAM macro, SRAM macro, and also logic densities.
We highlight the transistor design issues related to the SAC
technology for the first time. We also focus interconnect design to
achieve high density and low power ASIC.

Process Integration
Figure I (a) and (b) show the cross sectional SEM views of the

embedded DRAM cell part and high density logic part. The W-
polycide dual gate is covered with the Si-nitride (SiN) film for the
SAC. Only sources and drains of logic parts are salicided with CoSi2
(l00/sq.). Thin SiN films of the sidewall and the etch stopper are
used for the SAC to the gate and to the field. W-bitlines are merged
to local interconnects (LI) of logic parts. It is contributed to avoiding
deep contacts of the first metal. And, its shallow contact of LI also
makes ease of the SAC etching to the gate and to the field at logic
parts. The 8F2 of O.22um cylinder-type DRAM Cell (0.39um2) is
integrated with the SAC and the aggressive SRAM cell (<4um2) is
also realized with the SAC to the gate and the field. The logic gate

density also becomes the high value up to l70kG/mm2 due to the
SAC. Figure 2 shows a top view of 3.49um2 SRAM bit cell. The
nominal interconnect option of one LI, three levels fine metals, and
two levels rough thick metals is provided. The FSG and the
aluminum are the standard option.

To integrate the SAC,W-polycide dual gate, CoSi2, and DRAM-
cell, assignment of process windows for interdiffrrsions, boron
penetrations, junction leakage are the critical issues 12-31. Figure 3
shows the example of a process window on the interdiffrrsion. The
threshold voltage shift is suppressed when the arsenic is chosen, and
the temperature of the S/D RTA anneal and the furnace anneal which
corresponds to the DRAM cell formation are restricted to be below
1000C and 800C, respectively. The Vfb shift, shown in Fig.4, is
reduced with the LPCVD-SiN film, compared with the PECVD-SiN
film, which may be attributed to the enhancement of boron
penetration by H2 in SiN films with the SAC, as also reported
recently t2-31. The low temperature Mls-DRAM-cell-formation also
needs the care to suppress the depletion, shown in Fig. 5.

Ihansistor Design Issue Related to SAC Structure
The optimization of a halo and a extension implantation condition

is a key issue to achieve a high performance transistor. Especially,
the angle of a halo should be designed to be the allowed high angle
to control the short-channel effect and concurrently to reduce
junction capacitance, shown in Fig. 6. However, it is resiricted by the
height of the neighbor gate stack. Moreover, the height of the gate
stack becomes higher when the SAC is adapted because the cover

SiN film is also stacked on the gate. Therefore, we precisely check
the allowed angle at the configurations of the nearest neighbor gate
stacks by Monte-Carlo simulations. The stopping power of SiN ,

WSi2, and polysilicon films are precisely included in the model. The
results show the 30 degree is acceptable at the gate space of 0.26um,
and ions of the halo are blocked by the next gate stack below 0.26um,
shown in Fig.7. It is also suggested by the Monte-Carlo that the
stopping power of WSi2 film determines the extent of halo ions at
channel center, which contributes to a reverse short channel effect .

Those suggestions are included at the transistor design. The dual
gate oxides (4.0nnr/7.5nm, electrical at inversion) are used. The
thin oxide is for the logic of l.8V and the thick oxide is for the
DRAM cell and the 3.3V IO-interface. The Id-Vd characteristics of
0.l6um MOSFET for the logic are shown in Fig. 8. The simulated
tpd is 26pS, which is also attributed to the reduction of junction area
with the SAC. They are not leading edge, however, have the
competitive performance.

High Density and Low Power Interconnect Design
To reduce the routing grid of interconnection is a key issue for a

high density ASIC. The end of the line rule (extension) which is
generally adapted, enlarges the routing grid of a CAD-based-ASIC.
Therefore, we introduced the optical proximity correction (OPC) at
LI and fine metals to reduce the shortening of the line end, shown in
Fig. 9. It also contributes keeping the electromigration resistance and
the high yield in case of the misalignment and realizes 0.52um-
ASlc-erid.

The W-bitline is used as the LI. The capacitance (Cw) of the LI is
low because the film thickness is thin, compared with the aluminum.
Its low Cw is beneficial from the viewpoints of tpd , shown in Fig.10,
when the wire length is below lmm, although the resistance (Rw) of
LI is one order higher than that of the aluminum. Therefore, most of
all logic cells can be drawn by LI, which results in the cost-effective.

The thickness of 3 levels fine metals are also designed, based on
the consideration of Cw and Rw contribution to tpd. It results in that
Cw reduction is more beneficial than the slight Rw increase.
Moreover, both the introduction of the FSG and the slight reduction
of the metal thickness result in that the Cw keeps constant, compared
with the 0.25um generation, although the line & space reduced
aggressively, shown in Fig. 1 l. It means that the power consumed at
the interconnect is reduced directly by the scale factor.

The low CR interconnects for the global routing are provided at
top 2 levels of the metals. The acceptable interconnect width (=
lum) is obtained, if the long line clock frequency is 300MHz which
is the average target of 0.l6um ASIC, shown in Fig.12.

Conclusions
The integration issues of high density 0.16um embedded DRAM

ASIC process technology was shown. The transistor design related
to the SAC structure and the high density and low power
interconnect design was highlighted.
References '
tll R.Kramer,IEDM Tech. Digest, pp.3-7 ,1999
tzl M. Yoshida, et al., IEDM Tech. Digest, pp.4l-M,1999
t3l M. Togo, et al., IEDM Tech. Digest, prt9-52,1999

48



(a) DRAM

(b) Iogrc

Fig.l Cross sectional SEM views of the embedded DRAM cell part (a) and the logic part

(b). Note: only 4levels metals are shown.
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Fig. 7 Results of Monte-Carlo simulations. The

channel is the same when the gate space is larger

also determined by the stopping power of WSi2.
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Fig. 2 Top view of aggressive

3A9un2 SRAM bit cell.
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Fig. 6 Effect of halo angle.
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