A Study of the V_{TH} Fluctuation for 25nm CMOS

Kiyoshi Takeuchi, Risho Koh and Tohru Mogami

Silicon Systems Research Labs., NEC 1120 Shimokuzawa, Sagamihara, Kanagawa 229-1198, Japan Phone: +81-42-779-9930, Fax: +81-42-771-0886 E-mail: k-takeuchi@cb.jp.nec.com

1. Introduction

It is widely recognized that, for bulk CMOS, dopantinduced threshold voltage fluctuation may set a limit to the miniaturization, and that the use of intrinsic channel SOI (IC-SOI) can be a solution to this problem. However. though there are several attempts to determine dopantinduced V_{TH} standard deviation (σ_{VT}), the minimum attainable channel length for bulk is not clear because the acceptable σ_{VT} value is not clear. As for IC-SOI, V_{TH} fluctuation due to SOI thickness (Tsi) variation, which can be a serious issue, is not fully investigated. In an attempt to answer the above questions, bulk and planer/vertical IC-SOI MOSFETs are evaluated and compared from the viewpoint of V_{TH} fluctuation. The advantage of vertical SOI structures is discussed.

2. Bulk MOSFETs

6T-SRAM was used as a measure of σ_{VT} impact, as described below, since it is a typical logic component sensitive to the dopant-induced fluctuation. Fig.1 shows the equivalent circuit of a 6T-SRAM during read operation. To avoid flipping of the stored date by the reading, the static noise margin (M) must be larger than a certain value even if the V_{TH} values of the six transistors deviate from the designed ones (Fig.2). Keeping this condition satisfied, the worst case decrease of the read current (IREAD) was evaluated. For this purpose, M and IREAD as functions of VTH deviation ΔV_i (i = A₀, D₀, P₀, A₁, D₁, P₁) were calculated using circuit simulation (Fig.3). Then, ΔM and ΔI were approximated as equal to linear functions u and v of ΔV_i (Fig.4), so that they can be easily calculated for any combination of ΔV_i . The linear approximation facilitates the statistical manipulation, since if V_{TH} is normally distributed, so are u and v.

Fig.5 shows dopant-induced V_{TH} standard deviation (σ_{VT}) for square (L=W) FETs vs. L, predicted by dopant number model[1] and percolation model[2], which tends to be optimistic and pessimistic, respectively. For L below 80nm, T_{OX} and V_{DD} are fixed at 1.5nm and 1V, to avoid too much gate leakage. Though constant Tox causes the sharp rise of σ_{VT} in Fig.5, it should be noted that this does not worsen the situation, since the increase rate of σ_{VT}/V_{DD} is relieved by the fixed V_{DD}. Fig.6 shows estimated worstcase I_{READ} vs. L, assuming that ΔV_i is normally distributed, and the worst deviation of u and v is 6σ . V_{TH} of A₀ and A₁ is adjusted to secure 50mV noise margin, if it becomes necessary (Fig.6 dotted lines). Fig.6 shows that SRAM yield will approach zero around L=30nm due to the existence of extremely slow cells. Though the normality assumption needs further verification, it is likely that bulk

CMOS suffers from the serious limitation at L=25nm.

3. Intrinsic Channel SOI MOSFETs

For intrinsic channel SOI (IC-SOI), V_{TH} fluctuation due to the T_{SI} variation, which is absent in bulk FETs, must be considered. It is caused, not by the dopant area density modulation (Fig.7a), as in doped FD-SOI, but mainly by 2D electrostatic effect (Fig.7b). Therefore, $\Delta V_{TH}/\Delta T_{SI}$ is correlated, to some extent, with short channel effect. Fig.8 shows simulated $\Delta V_{TH}/\Delta T_{SI}$ (=K_T) and $\Delta V_{TH}/\Delta L$ (=K_L) for various 25nm single and double gate IC-SOI FETs. Since all the calculations are for $T_{SI} \ge 7nm$, V_{TH} increase due to the quantum size effect[3] is ignored. It was found that, for single gate SOI, applying appropriate back bias minimizes both K_T and K_L (Fig.9). This can be accounted for by the bias dependence of the back channel and 2D effect. To suppress K_T and K_L, double gate structure, or thin buried oxide (BOX) with moderate back bias, or strong back bias is necessary, in addition to a very thin Si layer (~10nm). The double gate structure is most effective for suppressing not only K_L but also K_T.

Let us now compare (A) a planer single gate SOI with optimum V_{BACK}=-2V, and (B) vertical double gate SOI (Fig.10)[4]. Corresponding plots are labeled in Fig.8 (T_{SI}=10nm and L=25nm). To suppress the V_{TH} spread, $\Delta V_{TH} = K_T \Delta T_{SI} + K_L \Delta L$ should be minimized. For (B), moderately small ΔV_{TH} of around $\pm 80 \text{mV}$ is obtained, even assuming relatively large ΔT_{SI} of ± 2.5 nm (10% of L; for vertical SOI, larger ΔT_{SI} is expected, since T_{SI} is determined by lithography). However, for (A), to achieve similar ΔV_{TH} , ΔT_{SI} must be ± 1 nm, because of the larger K_T value (Table 1). Though this ΔT_{SI} may be possible[5], considering all the tighter requirements for the planer single gate SOI (ultrathin BOX (~10nm), ΔT_{SI} control of ±1nm, necessity of relatively large VBACK), vertical double gate SOI seems to be more attractive as a candidate for 25nm CMOS.

Fig.11 shows I_{READ} vs. L for the vertical SOI, translated from the results in Table 1. In this case, the worst case corner points are used. At L=25nm, V_{TH} fluctuation of the vertical double gate SOI will be still acceptable, in contrast to the bulk, assuming the reasonable ΔT_{SI} range.

4. Conclusion

Dopant-induced V_{TH} fluctuation will cause the failure of 25nm bulk CMOS SRAM, as long as the normality assumption is valid, and hence, IC-SOI will become necessary. Considering both $\Delta V_{TH}/\Delta T_{SI}$ and $\Delta V_{TH}/\Delta L$ characteristics, vertical double gate IC-SOI is attractive for 25nm CMOS, because of its high immunity against T_{SI} variation.

Fig.2 Static noise margin

when V_{TH} deviation occurs.

80

60

40

20

0 10-2

t_{ox}=1.5nm

Standard deviation ovr (mV)

Fig.1 Equivalent circuit of SRAM during read operation.

 $x_i: \Delta V_{TH}$ of a transistor

Fig.4 Linear approximation is applied to a parameter space of interest.

Fig.7 Typical dependence of V_{TH} on T_{SI} .

40

(A) (B) vertical planer single double gate gate KT 43 25 (mV/nm) K_L (mV/nm) 13 8.3 $K_T \Delta T_{SI}$ 43 63 (mV) K_LΔL 33 21 (mV) ΔV_{TH} (mV) 76 83

References

[1] T. Mizuno et al., IEEE Trans., ED-41, p.2216, 1994.
[2] R. W. Keyes, Appl. Phys., 8, p.251, 1975.
[3] Y. Omura et al., IEEE, EDL-14, p.569, 1993.

Fig.9 $\Delta V_{TH}/\Delta T_{SI}$ and $\Delta V_{TH}/\Delta L$ vs back bias. Optimum V_{BACK} exists for single gate SOI, where vertical field is minimized without forming a back channel.

TSI

Fig.10 Vertical

double gate SOI.

0. a) b) margin (V) l_{READ} (mA/μm) 0. Noise I PO DC D ΔV_{TH} (V) $\Delta V_{TH} (V)$

Fig.6 Worst case SRAM read current (normalized by center value) vs L for bulk CMOS.

Fig.8 $\Delta V_{TH}/\Delta T_{SI}$ vs $\Delta V_{TH}/\Delta L$ for 25nm SOI FETs for various structures and V_{BACK} . Data points (A) and (B) are used in the text.

59

- s top view front view

ngle gate

10⁰

(B) double gate 20 10 7 L=25nm T_{SI} (nm)

single gate

110

L=W

Dopant number model

Percolation model

10-1

L_{EFF} (µm)

Fig.5 Dopant-induced V_{TH} fluctuation

single gate T_{BOX}=10nn VBACK=-2\

10

(A)

predicted by existing models.

AVTH/AT SOI (mV/nm)

40

t_{ox} is scaled

