Degradation of Ta₂O₅ Gate Dielectric by TiCl₄-Based Chemically Vapor Deposited TiN Film in W/TiN/Ta₂O₅/Si System

JooWan Lee, Chang Hee Han, Ji-Soo Park, and Jin Won Park

Memory R&D Division, Hyundai Electronics Industries Co., Ltd., Ichon-Si, Kyoungki-do, 467-701, Korea Tel: +82-336-639-1855, Fax: +82-336-630-4545, E-mail: leejw1@sr.hei.co.kr

Introduction

As devices are scaled down, ultra thin gate oxides less than 3.0nm are needed. Silicon dioxide (SiO₂) has its physical limit for thickness because of high leakage current due to direct tunneling. So, a thicker film with high permittivity is required to reduce leakage current. Tantalum pentoxide (Ta_2O_5) has been recommended as an alternative of SiO₂ for its high permittivity [1-3]. Ta₂O₅ can be deposited by either chemical vapor deposition (CVD) or physical vapor deposition (PVD). Penta Ethoxy Tantalum (PET: $Ta(OC_2H_5)_5$) is the most widely used tantalum precursor in CVD Ta_2O_5 process [1, 2, 4]. Reactive sputtering [5, 6] is the most common process for PVD Ta2O5.

There have been several studies on the reaction between TiN and Ta_2O_5 in capacitors. Diffusion of Ta into TiCl₄based CVD TiN layer and void formation in the Ta_2O_5 layer were observed by H. J. Lee et al. [4] in metal/oxide/polysilicon capacitors. J. P. Chang et al. [5] reported that excessive oxygen diffused to form a TiO₂ layer in metal/oxide/metal capacitors. However, there are few studies on the gate characteristics related to thermal stability of W/TiN/Ta₂O₅/Si devices. In this work, we show the degradation mechanism of Ta₂O₅ gate dielectric caused by TiCl₄-based CVD TiN or PVD TiN barrier in W/TiN/Ta₂O₅/Si system.

Experiment

10nm of tantalum pentoxide film was deposited on p-type (100) Si substrate by metal organic chemical vapor deposition (MOCVD) with the precursor of $Ta(OC_2H_5)_5$ at 450°C using Ar as a carrier gas. Prior to film deposition, Si surface was nitrided in ammonia ambient at 800°C for 30s to exclude oxidation of Si substrate during the Ta2O5 deposition. Post annealing for crystallization of Ta2O5 was performed at 800°C for 5min in oxygen ambient by rapid thermal process (RTP). During the post annealing, 3.0nm of silicon oxide layer was formed under Ta2O5 layer. 40nm of PVD or CVD TiN film was deposited on the Ta₂O₅ layer for comparison. PVD TiN films were reactively sputtered in N2/Ar mixture ambient with D.C power of 1kW. CVD TiN film was deposited using TiCl₄ and NH₃ as reactants at 680°C. Tungsten film of 100nm thickness was deposited on the TiN layer for gate electrode. After tungsten deposition, samples were annealed at 900°C for 30s in nitrogen ambient to evaluate the thermal stability of the multi-layers. Currentvoltage characteristics of the devices were measured using HP4155A with the square patterns of 1×10^{-4} cm² area. Transmission electron microscopy (TEM) was used to observe multi-layers. Chemical reaction and mass transport were characterized by secondary ion mass spectrometry (SIMS).

Results and Discussion

Breakdown fields measured at 1mA/cm² of leakage current are shown in Fig.1. In the case of as-deposited TiN barriers, PVD and CVD show similar breakdown behaviors. However, after annealing at 900°C, CVD TiN barriers show much low breakdown fields compared with PVD TiN, indicating that CVD TiN has worse barrier performance than PVD TiN.

In order to reveal the cause of the degradation of Ta_2O_5 gate devices that adopt CVD TiN barrier, TEM observations were carried out. From the cross-sectional view of PVD TiN, micro-voids are observed within the Ta_2O_5 layer along the TiN/Ta₂O₅ interface after annealing at 900°C (Fig. 2). However, the damage of Ta_2O_5 in CVD TiN sample is much more severe than in PVD TiN. Macro-void or disconnected area is shown in CVD TiN sample. From these results, It is found that PVD TiN has better barrier property against diffusion and reaction of materials than CVD TiN.

The SIMS depth profiles confirm the origin of the void formation near the TiN/Ta2O5 interface. In PVD TiN sample, O and Cl profiles are kept almost constant before and after annealing. However Ta ion counts increase in the PVD TiN layer after annealing indicating that Ta diffuses into TiN layer (Fig.3). That is to say, out-diffusion of Ta from the Ta2O5 layer into TiN layer is conjectured to lead to void formation in the Ta2O5 layer. On the other hand, vigorous diffusion of O as well as Ta into TiN layer is observed in CVD TiN sample after annealing (Fig.4). We consider the degradation mechanism of CVD TiN is different from that of PVD TiN. The small amount of diffusion of Ta can be explained by the existence of excessive Ta in Ta2O5. However, massive movement of tantalum accompanying oxygen diffusion has to be explained in other ways. The cooperative diffusion behaviors of both elements indicate that the reduction of Ta₂O₅ is involved in the degradation of the Ta₂O₅ layer in CVD TiN sample.

It is reported that Cl_2 is the most effective dry etching chemistry for Ta_2O_5 [7]. Considering that the CVD TiN layer contains 10 times more Cl than PVD TiN, residual Cl can reduce Ta_2O_5 and generate free Ta and O atoms. Thermodynamic consideration is also consistent with this discussion. In our calculation of Gibbs free energy, gaseous tantalum pentachloride (TaCl₅) and oxygen can be produced by the reaction of Ta_2O_5 with Cl_2 at 900°C (Fig.5). Or reduction of Ta_2O_5 is to occur by the corrosion behavior of Cl. Thermodynamic data for calculation is cited from Thermochemical data book [8]. Free oxygen and tantalum generated from the reduction of Ta_2O_5 can easily diffuse into TiN or Si at high temperature. All this procedures can explain the poor thermal stability of CVD TiN on Ta_2O_5 layer.

Conclusion

We have shown the gate characteristics of W/TiN/Ta₂O₅/Si devices related to the thermal stability of TiN barriers. Breakdown characteristics of PVD TiN samples at elevated temperature are much better than CVD TiN samples. Microvoids within the Ta₂O₅ layer are observed in PVD TiN sample after annealing at 900°C. The small amount of diffusion of Ta into TiN layer is observed and is considered to cause void formation in the PVD TiN sample. Ta₂O₅ is severely damaged in CVD TiN sample after annealing. High content of residual chlorine in CVD TiN is considered to reduce Ta₂O₅ and generate free Ta and O atoms. Free oxygen and tantalum generated from the reduction of Ta₂O₅ diffuse into TiN layer. As a result, macro void or disconnected area is formed degrading devices significantly.

References

- [1] L B. C. Lai et al., J. Appl. Phys., 85(8), p.4087, 1999
- [2] D. Park et al., IEEE Electron Device Lett., 19(11), p.441, 1998
- [3] G. B. Alers et al., Appl. Phys. Lett. 72(11), p.1308, 1998
- [4] H. J. Lee et al., J. Appl. Phys. 83(1), p.139, 1998
- [5] J. P. Chang et al., Appl. Phys. Lett. 74(24), p.3705, 1999
- [6] N. Novkovski et al., Phys. Stat. Sold. (a) 172, R9, 1999
- [7] K. P. Lee et al., J. Electrochem. Soc. 146(10), p.3794, 1999
- [8] I. Barin, Thermochemical Data of Pure Substances, p.1453, 1460, VCH, Weimhem, 1989

Fig.1. Breakdown characteristics of W/TiN/Ta₂O₅/Si devices at the current density of 1mA/cm². The open symbols indicate as deposited condition and the solid symbols indicate that samples are annealed at 900 °C.

Fig.2. Cross-sectional TEM images showing damage of Ta_2O_5 layer after annealing at 900 °C for 30s in N₂ ambient (a) PVD TiN barrier and (b) CVD TiN barrier. SiO₂ layers that were formed during the post annealing of Ta_2O_5 are shown.

Fig.3. SIMS depth profiles of Ta, O and Cl in the samples with PVD TiN barrier. (a) asdeposited and (b) after annealing at 900°C.

Fig.5. Gibbs free energy of the reaction between Ta_2O_5 and Cl_2 as a function of temperature. The forward reaction is possible at the temperature ranges where the reaction line lies below the horizon.

Fig.4. SIMS depth profiles of Ta, O and Cl in the samples with CVD TiN barrier (a) asdeposited and (b) after annealing at 900°C.