TaO_xN_y Gate Dielectric with Improved Thermal Stability

Heung-Jae Cho, Dae-Gyu Park, In-Seok Yeo, Jae-Sung Roh, and Jeong-Mo Hwang

Advanced Process Team, Memory R&D Division, Hyundai Electronics Industries Co. Ltd.,

Ichon P.O. Box 1010, Ichon-si, Kyoungki-do, Korea 467-701

Phone: +82-336-630-4466 Fax: +82-336-630-4545 e-mail: hjaecho@sr.hei.co.kr

ABSTRACT

We report characteristics of TaO_xN_y gate dielectric with improved thermal stability and favorable flat band shift over Ta_2O_5 for giga scale memory devices. Compared with Ta_2O_5 , W/WN/TaO_xN_y/SiO_2/Si *n*MOS capacitors demonstrated negative V_{fb} shift (-0.17 V) and robust reliability against selective oxidation at 950 °C. Interface state density (D_{it}) as low as $8.5 \sim 15 \times 10^{10} \text{ eV}^{-1} \text{cm}^{-2}$ near the midgap and excellent reliability characteristics with low gate leakage current are encouraging for future memory devices.

INTRODUCTION

 Ta_2O_5 has attracted lots of attention for MOS device applications such as storage capacitors[1] and gate dielectrics[2-5] because of high dielectric constant (k~25) and good leakage current. There are some problems, however, such as chemical reaction between Ta_2O_5 and poly-Si, which led to the employment of stable electrodes such as refractory metal or metal nitrides [1-4]. Owing to the high work function of metal nitrides, it is difficult to obtain low threshold voltage in MOSFET device [4,5]. In addition, the fragility of metal/ Ta_2O_5 structure against post thermal budget in oxidation ambient becomes a serious issue for device reliability and requires new fabrication scheme. In the present work, we implemented a novel process to overcome the problems associated with threshold voltage and thermal stability using TaO_xN_y gate dielectric.

EXPERIMENTAL

nMOS capacitors and transistors having W/barrier metal/ Ta2O5/SiO2/p-Si structure were fabricated. Ta2O5 was deposited on the ultrathin (~5-10Å) SiO₂ using Ta(OC₂H₅)₅ and O2 at 400°C, whereas TaOxNy was prepared using Ta(OC₂H₅)₅ and NH₃[6]. Gate dielectric improvement anneals were carried out in ultraviolet-ozone at 350 °C and in O2 at 800°C. Then, W/barrier metal (TiN or WN) electrodes were sputter-deposited on gate dielectric and annealed in N2 at 700-800 °C for 30 minute. In order to investigate the effect of selective oxidation (SO) on gate dielectric, samples were oxidized in H₂-rich oxidant ambient at 950 °C for 2 minute. Fundamental film properties were probed by X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES). Interfacial and electrical properties of W/barrier/TaOxNv/SiO2/Si MOS capacitors were measured using C-V, conductance, I-V, breakdown voltage (BV), and time dependent dielectric breakdown (TDDB) methods.

RESULTS AND DISCUSSIONS

A. W/Metal barrier/Ta₂O₅/SiO₂/Si nMOS System

Shown in Fig. 1 is leakage current density of Ta_2O_5 film with different metal gate electrode, where WN exhibited lower gate leakage than TiN near 2-3 V range after anneal at 700°C ~ 800°C. Fig. 2 shows sharp WN/Ta₂O₅ interface as

detected by XPS core level spectra, confirming stable WN with Ta_2O_5 at elevated temperature. We observed interfacial reaction at TiN/Ta₂O₅ interface, however, due to the solubility of Ta in TiN [1]. A projected 10-year lifetime of WN/Ta₂O₅ (Fig.3) as determined by TDDB under the constant stress reveals superior lifetime to the thermal oxide. An electric field of over ~10 MV/cm may be used at room temperature using WN/Ta₂O₅. Fig. 4 displays the threshold voltage (V_{th}) of metal gated Ta₂O₅/SiO₂/Si nMOSFET with high V_{th}(~1V), which is consistent with the earlier works [4,5].

B. W/WN/TaOxN/SiO2/Si nMOS System

In order to reduce V_{th} by controlling charges in gate dielectrics, we developed TaO_xN_y gate dielectric. Fig. 5 depicts high frequency C-V plots with TaO_xN_y , plots with TaO, N,, demonstrating negative shift (-0.17 V) in flat band condition with respect to Ta₂O₅ and small hysteresis (20 mV). The AES depth profiles of TaO_xN_y films in Fig. 6 indicate that nitrogen was diffused out or piled up at SiO₂/Si interface after improvement anneal. The negative flat band shift is attributed to the N induced positive charges, resulting in a favorable Vth for high performance nMOSFET. Figs. 7-8 are high-low C-V and G/ ω -log ω plots of W/WN/TaO_xN_y/ SiO₂/Si nMOS capacitors after anneal in forming gas. Excellent frequency dispersion between 1 MHz and 100Hz except the midgap region is observed. The D_{it} as determined by conductance loss (G/ω) near the midgap including small hump region is in the order of $8.5 \sim 15 \times 10^{10} \text{ eV}^{-1} \text{ cm}^{-2}$. Fig. 9 displays J-V characteristics of TaOxNy and Ta2O5 at the same $T_{eff} \sim 31 \text{ Å}$, where the gate leakage of $TaO_x N_y$ is ~5 orders of magnitude lower than that of poly-gated SiO₂ at -2.5 V. The highlight of this work is improved thermal stability using TaO_xN_v even after SO at 950 °C (Figs.10-11). TaO_xN_v showed durable reliability characteristics over Ta2O5 in terms of less increase in T_{eff} (Fig.10) and higher BV pass rate on 64 million memory cell capacitors (Fig.11). Excellent BV distribution (11 MV/cm) of TaO_xN_y film even after selective oxidation indicates that TaO_xN_y film may allow us to keep up the standard CMOS fabrication process and technology.

CONCLUSIONS

WN gate electrode demonstrated stable interface with Ta_2O_5 at the elevated temperature over TiN. Compared with Ta_2O_5 , TaO_xN_y gate dielectric exhibited good-natured negative V_{fb} shift and durability against high temperature selective oxidation. Characteristics such as low D_{it} low gate leakage current, and excellent reliability are promising for future DRAM devices.

REFERENCES

- [1] M.-B. Lee et al., J. Appl. Phys. p.139 (1998).
- [2] D. Park et al., IEDM Tech. Digest. p.381 (1998).
- [3] A. Chatterjee et al., IEDM Tech. Digest. p.777 (1998).
- [4] T. Devoivre et al., VLSI Tech. Dig., p.131 (1999).
- [5] I.C.Kizilyalli, et al IEEE Electron Devices Lett., 19, 423 (1998).
- [6] H.-J. Cho, et al., Patent Pending.

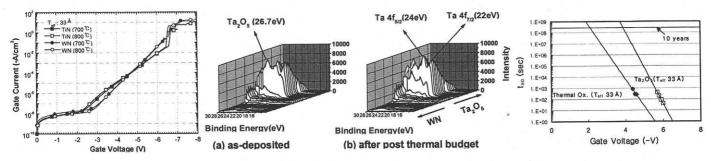
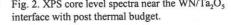
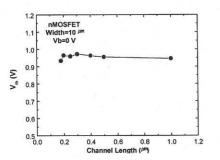
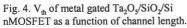



Fig. 1. J-V characteristics of Ta_2O_5 with TiN and WN Fig. 2. XPS core level spectra near the WN/ Ta_2O_5 barrier metal as a function of post thermal budget.


(%)


ration

Conce

Atomic

Fig. 3. Time to 50% cumulative failure of W/WN/Ta2O5/SiO2/Si nMOS capacitor.

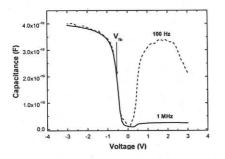


Fig. 7. High-low C-V characteristics of WN/W TaO_xN_y /SiO₂/Si nMOS capacitor.

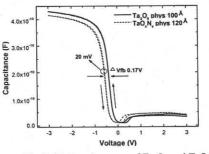


Fig. 5. Hysteresis curves of Ta2O5 and TaOxNy nMOS capacitors.

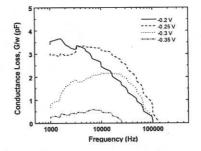
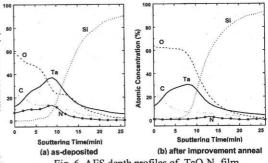
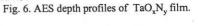




Fig. 8. Conuctance loss (G/ω) - log ω plot as a function of gate voltage near the midgap.

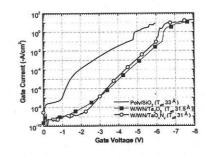


Fig. 9. J-V characteristics of Ta2O5 and TaOxNy films compared with controlled oxide.

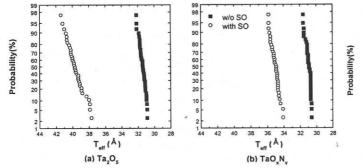


Fig. 10. T_{eff} change after selective oxidation.

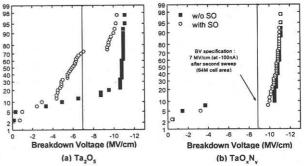


Fig. 11. Cumulative probability of breakdown field on 64 M cell area.