C-V Characteristics of ZnO Thin-Film Field Effect Transistor Structures Formed on Glass Substrates

Y. Ohmaki, S. Kishimoto, Y. Ohno, F. Matsukura, H. Ohno, K. Saikusa¹, T. Aita¹, A. Ohtomo¹, and M. Kawasaki¹

1. Introduction
A wide-gap semiconductor ZnO has attracted considerable attention as promising material for ultraviolet light emitting devices [1]. An even wider area of applications is expected if switching devices can be made of a transparent semiconductor ZnO and integrated with light emitting devices. Quite recently, an invisible thin-film ZnO field effect transistor (FET), which is made on a glass substrate and uses highly conductive transparent materials as gate or ohmic electrodes, has been successfully fabricated [2]. Although these FET's showed a number of advantages besides its high transparency, it is necessary to understand the interface properties of metal-insulator-semiconductor (MIS) structures in order to make them suitable for practical applications. In this work, we investigated the capacitance-voltage (C-V) characteristics of the thin-film ZnO MIS diode to evaluate the properties of the MIS structure.

2. Experimental Method
Sample Structure
Figure 1(a) shows the cross-sectional view of the sample structure. We used ITO (Indium-Tin-Oxide)-coated glass substrate. The ITO is used as a buried transparent gate electrode. On the substrate, a SiO₂ insulating film is formed by using spin-on glass (SOG) (TOKYO OHKA KOGYO: OCD T-7) in advance. The substrate was then loaded into a vacuum chamber, and a polycrystalline ZnO film was deposited by laser ablation method using a KrF excimer [1]. We prepared two kinds of MIS diodes: one is of undoped ZnO which is unintentionally n-doped, while the other is of Li-doped ZnO with high resistivity. An Al electrode (typical size of ~500×500 μm²) was formed to make an ohmic contact to ZnO, and using it as a mask, the rest of the ZnO film was removed by wet-chemical etching. Note that a fringe of the Al electrode touches to the SOG directly as a result of side-etch effect. In the analysis of the result of the C-V characteristics, we took it into account. Finally, a part of the SOG film was removed in order to make contact with ITO. The thickness of each film was measured by a Dektak stylus profiler.

C-V Measurements
The capacitance of the Al/ZnO/SOG/ITO MIS diode was measured by using an impedance analyzer (Hewlett Packard: HP4194A) at room temperature (see Fig. 1). In the C-V measurements, the bias voltage was swept from -7 to 6 V and vice-versa at the sweep-rate of ±0.1–0.22 V/min. The frequency ranged from 100 Hz to 10 MHz. In the transient measurements, we measured C as a function of passed time t after the bias voltage was changed from 10 to -10 and -10 to 10 V, respectively. Before the transient measurements, the

![Figure 1](image_url)
sample was kept biased for a few hours which is long enough to settle the MIS structure in a steady state.

3. Results and Discussion

Figure 2 shows the C-V curve of the Li-doped ZnO MIS diode. For this sample, the thickness of SOG is 4200 Å, and that of ZnO is 800 Å, respectively. It can be seen that C increases when a positive bias $V > 0$ is applied. We observed almost no frequency dependence in the C-V characteristics (not shown). Since it was confirmed that the Li-doped ZnO becomes conductive as C was increased in a FET structure [2], we regarded the saturated capacitance at $V > 0$ as the accumulation capacitance C_{acc}. Using the experimental value of C_{acc}, we calculated the dielectric constant of SOG and found it to be ~5.5. When V is negative, the Li-doped ZnO film is insulating. Assuming that the ZnO film is fully depleted under the negative bias condition where C reaches its minimum, we estimated the dielectric constant of the ZnO film to be ~ 6.3, which is somewhat smaller than the value (8–9) reported in literature [3].

One notices in Fig. 2, on the other hand, that the C-V curve exhibits a clear hysteresis loop: although the C-V curve does not depend on the frequency above 100 Hz, it depends sensitively on the bias sweeping rate. Similar hysteresis loop was also observed in the C-V curves of undoped ZnO MIS diodes. The direction of the trace of C-V curve suggests the existence of mobile charges in the insulator, rather than deep levels at the ZnO/SOG interface.

The time-constant of the hysteresis in the C-V curve was evaluated by measuring the transient change of C of the undoped ZnO MIS diode. In Fig. 3(a), C is plotted as a function of t in the case when V is changed from 10 to -10 V at $t = 0$, and in Fig. 3(b) is plotted C when V is changed from -10 to 10 V, respectively. It can be seen that the time constant depends on the change of the polarity of V, but in both polarities the MIS capacitor reaches its steady state after 10^7–10^8 s. This also suggests that the hysteresis of C-V characteristics originates from mobile ions in the insulator.

3. Conclusion

In conclusion, we carried out the C-V and C-t measurements of the ZnO MIS structures formed on glass substrates. The features of the C-V curves clearly indicate that the charge accumulation occurs at the ZnO/SOG interface. The hysteresis of the C-V trace with long time constant reveals the existence of mobile charge in SOG, which should be improved for practical FET applications.

Acknowledgement

This work was supported by Japan Science and Technology Corporatton (JST).

Reference