E-6-6

Accurate Small-Signal Modeling and Parameter Extraction for RF MOSFETs

Seonghearn Lee, Cheon Soo Kim¹, and Hyun Kyu Yu¹

Department of Electronic Engineering, Hankuk University of Foreign Studies, Yongin, Kyungki-do, 449-791, Korea

Phone: +82-335-330-4117 Fax: +82-335-330-41120 e-mail: shlee@maincc.hufs.ac.kr

¹Micro Electronics Technology Lab., Electronics and Telecommunications Research Institute, Yusong, Taejon, Korea

1. Introduction

For modeling and parameter extraction of RF silicon MOSFETs, a simple small-signal model omitting the substrate effect has been widely used [1], but its inappropriateness was recently pointed out [2]. At high frequencies, the influence of the substrate admittance on device output characteristics increases substantially. This effect is basically originated from the lossy dielectric property of the bulk Si well/substrate region. Recently, a conventional small-signal model in Fig. 1(a) has been reported [2,3], but is not sufficient to model the lossy Si bulk region at the GHz range. Therefore, in this paper, we propose a new small-signal MOSFET model based on a physically acceptable substrate network in Fig. 2(a), and the direct extraction method will be presented.

2. Modeling and Parameter Extraction

S-parameters are measured and de-embedded for N-MOSFETs with 0.8 µm mask gate length and 10 x 10 µm gate width on 2 kΩ·cm high resistivity Si wafers. In order to extract substrate parameters, the substrate model block should be separated from the rest of device. As the first extraction step, extracted R_d value determined by fitting Re($Z_{22} - Z_{12}$) = $R_d + A_d / (\omega^2 + B)$ up to 30 GHz [1] was subtracted to obtain corrected Y^c -parameters from measured S-parameters. In the saturation region where $R_s \ll r_{ds}$, the substrate networks with r_{ds} that are represented as the admittance of $Y_{22}^c + Y_{12}^c$ are simplified by Figs. 1(b) and 2(b). Thus, new substrate parameters in Fig. 2(b) are directly extracted using the following equations:

$$C_{\rm sub}{}^{\rm c} = \frac{1}{\omega} \operatorname{Im}(Y_{22}{}^{\rm c} + Y_{12}{}^{\rm c}) = C_{\rm jd} \left[\frac{1 + m_1 \omega^2}{1 + m_2 \omega^2} \right]$$
(1)

$$\frac{1}{R_{\rm sub}^{\rm c}} = \operatorname{Re}(Y_{22}^{\rm c} + Y_{12}^{\rm c}) = \frac{1}{r_{\rm ds}} + \frac{k_1 \omega^2}{1 + k_2 \omega^2}$$
(2)

where m_1 , m_2 , k_1 , and k_2 are functions of substrate parameters, and independent of frequency. Here, the pole frequency of the substrate admittance is defined as: $\omega_c =$ $1 / [R_{bk}(C_{bk} + C_{jd})]$. If R_{sub}^{c} and C_{sub}^{c} in the low ($\omega \ll \omega_c$) and high frequency ($\omega \gg \omega_c$) limit can be measured, it is easy to extract the substrate parameters. However, it is practically difficult to measure S-parameters at these bound frequencies. Thus, in this work, C_{jd} , m_1/m_2 , and k_1/k_2 are obtained by fitting frequency response of (1) and (2). Using these values, C_{bk} and R_{bk} are determined by :

$$C_{\rm bk} = \frac{C_{\rm jd}}{(m_2/m_1) - 1}, \quad R_{\rm bk} = \frac{k_2}{k_1} \left[1 - \frac{m_1}{m_2} \right]^2$$
 (3)

Fig. 3 shows good correspondences between measured data and fitted curves at different V_{bs} , verifying the extraction accuracy. Since $\omega_c \approx 2$ GHz, measured data below 7 GHz are practically sufficient to fit substrate parameters accurately. In Fig. 3, R_{sub}^{c} and C_{sub}^{c} data decrease abruptly. This frequency-dependence, so called, dispersion effect is obviously caused by the lossy substrate effect, which is incorporated into Fig. 2(a).

Fig. 4 shows extracted Vbs-dependence of C_{jd} , C_{bk} , and R_{bk} . The reduction of extracted C_{jd} is observed at more negative Vbs (higher Vsb), because the depletion region expands with increasing Vsb. However, extracted C_{bk} increases with Vsb, probably indicating the reduction of bulk region due to the increase of the depletion width.

To validate the physical validity of the new substrate network, the rest of parameters are extracted as follows: After corrected Z^d -parameters are obtained by subtracting extracted C_{jd} , C_{bk} , and R_{bk} from corrected Z^c -parameters, Rg is obtained by fitting $\operatorname{Re}(Z_{11}^d - Z_{12}^d) = Rg + Ag/(\omega^2 + B)$ vs. frequency [1]. The Rs is extracted by fitting $\operatorname{Re}(Z_{22} - Z_{12})$ vs. frequency for a test MOSFET where source and drain are interchanged. After Rs and Rg are subtracted from the Z^d-parameters, intrinsic parameters were extracted by previous Y-parameter equations [2]. In Fig. 5, good agreement is achieved between measured and modeled S-parameters, verifying the model accuracy.

To confirm the accuracy of the new model, the extracted r_{ds} that is the most sensitive parameter to the substrate model is compared with those of conventional models. To obtain r_{ds} in Fig. 1(b), C_{ds} , C_{db} , and R_{db} are extracted by fitting the following equation vs. frequency:

$$\frac{1}{\omega} \operatorname{Im}(Y_{22}^{c} + Y_{12}^{c}) = C_{ds} + \frac{C_{db}}{1 + \omega^{2} R_{db}^{2} C_{db}^{2}}$$
(4)

After these parameters, R_s , and R_g are sequentially subtracted from the Z^c-parameters, r_{ds} in Fig. 1 were extracted [2]. Also, the r_{ds} in the model without bulk effect [1] is extracted. Fig. 6 shows extracted r_{ds} values vs. frequency between conventional models (Ref. [1], Fig. 1) and new model (Fig. 2). In this plot, the r_{ds} data obtained from the new model are nearly independent of frequency, in contrast to those from conventional ones. This frequency-independence justifies the use of a new model.

3. Conclusions

A new model with substrate network incorporating the lossy substrate effect is proposed to predict the dispersion behavior of R_{sub}^{c} and C_{sub}^{c} and to eliminate the severe frequency-dependence of r_{ds} observed from conventional networks. The accurate extraction method using the simple curve-fit is also developed to determine substrate parameters directly. The physical validity of the substrate network is demonstrated by observing that r_{ds} obtained from the new model is independent of frequency.

References

- S. Lee, H. K. Yu, C. S. Kim, J. G. Koo, and K. S. Nam, IEEE Microwave and Guided Wave Lett. 7, 75 (1997)
- [2] C.-H. Kim, C. S. Kim, H. K. Yu, and K. S. Nam, IEEE Microwave and Guided Wave Lett. 9, 108 (1999)
- [3] Y.-J. Chan, C.-H. Huang, C.-C. Weng, and B.-K. Liew, IEEE Trans. Microwave Theory Tech. 46, 611 (1998)

Fig. 1. (a) A conventional small-signal MOSFET model. (b) A substrate network with r_{ds} simplified in the saturation region.

Fig. 2. (a) A new small-signal MOSFET model. (b) A substrate network with r_{ds} simplified in the saturation region ($Rs \ll r_{ds}$).

Fig. 3. The measured data (symbols) and fitted curves of R_{sub}^{c} and C_{sub}^{c} at different V_{bs} using frequency-dependent (1) and (2).

Fig. 4 V_{sb} (= - V_{bs}) dependence of extracted C_{jd} , C_{bk} , and R_{bk} .

Fig. 5. Measured (circles) and modeled (lines) S-parameters.

Fig. 6. Extracted r_{ds} vs. frequency for previous and new models.