A-4-3

Improved Transconductance and Gate Insulator Integrity of MISFETs with Si_3N_4 Gate

Dielectric Fabricated by Microwave-Excited High-Density Plasma at 400°C

Ichiro Ohshima, Hiroyuki Shimada¹, Shin-ichi Nakao, Weitao Cheng, Yasuhiro Ono¹,
Masaki Hirayama, Shigetoshi Sugawa, Herzl Aharoni²,³ and Tadahiro Ohmi²

Phone: +81-22-217-5564 Fax: +81-22-217-5551 e-mail: ohshima@sse.ecei.tohoku.ac.jp
Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
¹New Device Development Group, SEIKO EPSON Corporation, Nagano 399-0293, Japan,
²New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
³Department of Electronic and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

FAX:+972-8-6472-949 email: Herzl@ee.bgu.ac.il

Abstract

A low-resistivity metal gate Metal-Nitride-Semiconductor MNSFETs technology, exhibiting an excellent transconductance and high gate insulator integrity is reported. The gate stack consists of directly grown Silicon Nitride (Si_3N_4) film using microwave-excited (2.45GHz) high-density ($<10^{13}$ cm$^{-3}$) Ar/N$_2$/H$_2$ or Ar/NH$_3$ plasma and Tantalum Nitride/bcc-phase Tantalum (\sim15µm)/Tantalum Nitride, [TaNx/(bcc-Ta)/TaNx] stacked metal gate (<1.0ohm/sq).

Introduction

The scaling down of MOSFETs in ULSI Technology dictates a reduction in the gate Equivalent Oxide Thickness (EOT) down to the scaling limit, resulting an increase of the leakage current, due to direct tunneling, for tox=3nm. Accordingly an effort is made to replace SiO$_2$ gates by higher dielectric-constant films, such as Si$_3$N$_4$ [1][2], ZrO$_2$ [3] and HfO$_2$ [4]. Another problem regards the undesirable increase in EOT, due to the influence of the polysilicon gate depletion layer capacitance. Accordingly, in order to avoid this problem, a metal gate is proposed as a solution.

We have already reported the attractiveness of Si$_3$N$_4$ as a high-K gate insulator, grown by using microwave-excited high-density plasma at 400°C [2], and of TaNx/(bcc-Ta)/TaNx stack as a metal gate electrode, due to its low resistivity [7]. Accordingly, they are used in this work. As a result, an excellent transconductance of Si$_3$N$_4$-MNSFETs as well as high gate insulator integrity, of TaNx gate MNS capacitors are reported.

Experimental

TaNx MNS capacitors and TaNx/(bcc-Ta)/TaNx stacked metal gate FDSOI-MNSFETs were fabricated (Fig.2). The Capacitors were fabricated on Cz phosphorus doped 0.8-1.2 Ω·cm, (100) silicon wafers and the SOI-MNSFETs were fabricated on SOI wafers (SOI/BOX=45nm/200nm). Si$_3$N$_4$ films were grown as the gate insulator in an Ar/N$_2$/H$_2$ (for FETs) or Ar/NH$_3$ (for capacitors) plasma system (Fig.1), at pressure ratios of 95/5 or 96/4, respectively, at 400°C. The applied microwave power density and frequency, were 5W/cm2 and 2.45GHz, respectively. The three layers of the stacked TaNx/(bcc-Ta)/TaNx (=15nm/160nm/15nm) structure, were then successively deposited as a gate metal, by RF (40.68MHz, 80W) sputtering, at room temperature. S/D of FDSOI-MNSFETs was formed by ion-implantation(29As:1.5keV-1.5 × 1015cm$^{-2}$) and post implantation annealing at 450°C for Shoures to activate the implanted dopants [8].

Results and Discussions

Fig.3 shows C-V characteristics of TaNx/(bcc-Ta)/TaNx metal gate MNS capacitor. Flat band voltage shift is below 4mV. Typical Id-Vg characteristics of the MNSFET are shown in Fig.4. In Fig.5 a comparison of the transconductances(g_m) of a MNSFET and a MOSFET both with stacked TaNx/(bcc-Ta)/TaNx metal gates, is shown. The transconductance of nMNSFET is higher than that of nMOSFET in the high Eox range. Similar result was obtained in JVD Si$_3$N$_4$ MNSFETs [9]. Fig.6 shows the combined reflected X-Ray intensity from the Si$_3$N$_4$ surface and Si$_3$N$_4$/Si interface as well as from the SiO$_2$ surface and SiO$_2$/Si interface, as a function of the incident X-Ray angle, measured by Grazing Incident X-Ray Reflectivity (GIXR)[10]. This measurement yield the interface roughness as summarized in Table 1 , showing that the interface roughness of the Si$_3$N$_4$/Si is smaller than that of SiO$_2$/Si. TEM cross section view of TaNx/Si$_3$N$_4$/Si and TaNx/SiO$_2$/Si structures are shown in Fig.7, which confirm that Si$_3$N$_4$/Si exhibit smoother interface. The findings of Table I and Fig.7 can explain the higher transconductance of MNSFET than that of MOSFET (Fig.5) by the smaller interface roughness [11]. Fig.8 and 9 show the charge to breakdown and the time to breakdown characteristics, respectively, for three Vg values, of TaNx gate MNS capacitors, which exhibit high integrity thin (2.44nm) Si$_3$N$_4$ gate insulator. Fig.10 was obtained from the 50% failure rate values of Fig.9. The 10 years lifetime was determined by extrapolation at Vg=2.55V for EOT=2.44nm Si$_3$N$_4$ films [12].

Conclusion

Metal-Nitride-Semiconductor MNSFETs technology is presented, exhibiting excellent transconductance and high gate-insulator integrity. The higher transconductance of the MNSFET with respect to that of MOSFET can be explained by the lower interface roughness.

Acknowledgements

The authors would like to thank Technos Co., Ltd. for GIXR measurement.

References

Fig. 1 Microwave-excited high-density plasma system. Silicon nitride gate insulator is grown at 400°C.

Table I Interface roughness of the gate insulator/Si interface.

<table>
<thead>
<tr>
<th>Gate Insulator/Si</th>
<th>Interface Roughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si3N4/Si</td>
<td>Below Detection Limit (<0.1nm)</td>
</tr>
<tr>
<td>SiO2/Si</td>
<td>0.29nm</td>
</tr>
</tbody>
</table>

Fig. 4 Id-Vg characteristics of TaNx/(bcc-Ta)/TaNx stacked metal gate FD-SOI nMNSFETs and nMOSFETs.

Fig. 5 Comparison of transconductances (Vd=0.05V) of TaNx/(bcc-Ta)/TaNx stacked gate MNSFET and MOSFET.

Fig. 6 Combined X-Ray Intensity reflected from the surfaces of the respective insulating films and from their interfaces with the Si substrate.

(a)TaNx/Si3N4/Si
(b)TaNx/SiO2/Si

Fig. 7 TEM cross section view of (a)TaNx/Si3N4/Si and (b)TaNx/SiO2/Si

Fig. 8 Charge to breakdown characteristics (Qbd) of PVD-TaNx gate MNS capacitors, for three Vg values.

Fig. 9 Time to breakdown characteristics (Tbd) of PVD-TaNx gate MNS capacitors, for three Vg values.

Fig. 10 Lifetime extrapolation of a Si3N4 MIS capacitor, indicating 10 years lifetime for Vg=2.55V.