B-8-2

Defect Termination by Nitrogen Bonding due to NO Nitridation in MOS Structures

Keiko Kushida-Abdelghafar, Kikuo Watanabe, Takeshi Kikawa, Yoshiaki Kamigaki¹ and Eiichi Murakami²

Central Research Laboratory, Hitachi, Ltd.

1-280 Higashikoigakubo, Kokubunji, Tokyo 185-8601, JAPAN Phone: +81-42-323-1111 Fax: +81-42-327-7682 E-mail: kushida@crl.hitachi.co.jp ²Semiconductor and Integrated circuits Division, Hitachi, Ltd. 2326 Imai, Ome, Tokyo 198-0023, JAPAN

1. Introduction

Using NO nitrided silicon oxide provides higher reliability for hot carrier degradation and stress-induced leakage current (SILC), but not for negative bias temperature instability (NBTI). [1][2][3] To utilize such nitrided films for future-generation MOS devices, it is necessary to understand the role of nitrogen at the interface and inside the SiO₂. To evaluate the bond strength near the nitrided SiO₂/Si(100) interface and inside the SiO₂, and thus clarify the reliability issues, the chemical structure relating to the nitrogen was modeled. The model was confirmed by electron spin resonance (ESR) measurements and by x-ray photoelectron spectroscopy (XPS). We also electrically characterized the interface trap density in MOS capacitors.

2. Experimentals

SiO₂ films with thicknesses of 2 to 9 nm were formed on ptype Si(100) by wet oxidation. The films were annealed in 1 to 100% NO gas ambient at 900 to 950 °C. For ESR analysis, 2-nm-thick SiO₂ films were grown on wafers polished on both sides and diced into bars. Hidrazine treatment was performed to terminate edge defects. XPS analysis was carried out with a monochromatized AlK α xray source. The interface trap density was characterized by high frequency C-V and quasi-static C-V measurements for poly-Si gate capacitors with and without H₂ annealing (450°C, 30 min). The LOCOS was used for isolation. The SiO₂ film thickness for capacitors was 9 nm.

3. Results and Discussion

The results of the ESR measurements are shown in Fig. 1 for an SiO₂ film and an NO nitrided SiO₂ film (NO annealing: 5% NO gas, 950°C, 20 min). Both films showed Pb₀ and Pb₁ centers.[4] The signal intensities are listed in Table 1. Although the intensities of both defects decreased after nitridation, the decrease in the signal for the Pb₀ center was drastic. The decrease in the ESR signals resulted from N-Si bond formation at the interface.

¹Current address: Faculty of Engineering, Kagawa University 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan

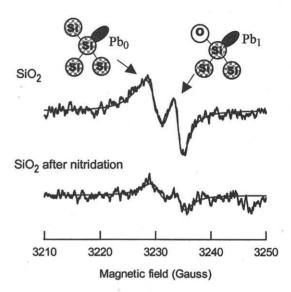


Fig. 1 ESR signals for SiO₂ and nitrided SiO₂

Table 1. Intensities of Pb₀ and Pb₁ centers for SiO₂ and nitrided SiO₂ (a. u.)

	SiO ₂ 2442	Nitrided SiO ₂ 710	Decrease in intensity	
Pb ₀			1732	79%
Pb ₁	831	356	474	21%
1 A.			2206	100%

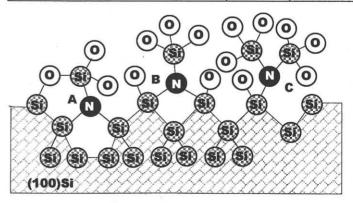


Fig. 2 Model of the chemical structure of NO-nitrided SiO2/(100)Si.

By bonding N to the dangling bond, the nitrided interface structure was modeled and is shown in Fig. 2. If the N atom bonds to a Pb₀ center, the structure of the Si-N bond at the interface is like that of A in Fig. 2. In this structure, the second nearest neighbors of the N atom are mainly Si, and O to a lesser extent. On the other hand, if the N atom bonds to a Pb₁ center, the structure is like that of **B** or **C** in Fig. 2 and the second nearest neighbors are mainly O.

To determine the chemical structure, XPS analysis was performed on the same samples. The N1s photoelectron spectrum is shown for the NO-nitrided SiO₂ film in Fig. 3. As reported previously, a peak is observed at 398 eV which corresponds to N=Si₃ with some O atoms as the second nearest neighbors.[5] However, the peak is asymmetric, showing that two or more energy states exist. The peak can be deconvoluted into two components with an energy difference of about 0.6 eV. Referring to the model shown in Fig. 2, we assigned the lower energy peak N_L as the N in structure **A**, and the higher energy peak N_H as the N in structures **B** and **C**, which have greater numbers of O atoms as second nearest neighbors. The peak intensity ratio of N_L / N_H was about 4, which is in good agreement with the ratio of decrease of the Pb₀/Pb₁ signal.

The decrease in interface trap density by NO nitridation (900 $^{\circ}$ C, 10 min) was electrically characterized in the capacitor with 9-nm SiO₂. The results are shown in Fig. 4. In Fig. 4, the solid and open squares show D_{it} before and after H₂ annealing. As expected from the ESR results, the density of interface traps drastically decreased during NO

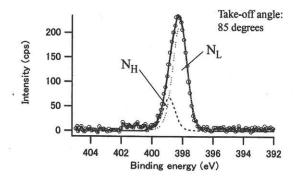
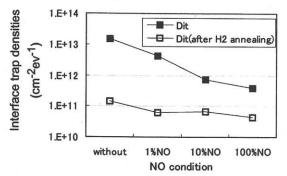
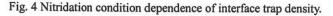




Fig. 3 XPS N1s spectrum for the NO-nitrided SiO₂ film; the dashed lines are curve-fitted peaks with chemical states as labeled. The solid line is the sum of these peaks.

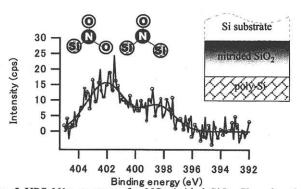


Fig. 5 XPS N1s spectrum for NO-nitrided SiO_2 film after the Si substrate was etched off.

nitridation. When the NO nitridation was performed in 10% NO gas ambient, more than 90% of the traps were terminated by N.

Next, the nitrogen bonding inside the SiO_2 was analyzed. The poly-Si-gate surface was made to adhere to a Si wafer, and the original Si substrate was then polished and etched off in hidrazine. The N spectrum obtained by XPS is shown in Fig. 5. A weak signal with a binding energy of 398 eV and a broad peak with a higher binding energy were detected. According to a calculation using a first-principle approach, [6] the higher energy peak can be assigned to an N-Si₂O or N-SiO₂ structure. From these results, we found that the NO nitridation not only affects the interface but also creates some nitrogen bonds inside the SiO₂ film.

4. Conclusion

We have successfully modeled the NO-nitrided SiO₂/Si interface, thus explaining on defect analysis obtained by ESR, chemical structure analysis obtained by XPS, and C-V results. At the interface, N atoms are preferentially bonded to Pb₀ centers, which form the dominant Si-N bonds at 398 eV. As a result, more than 90% of the traps are terminated by N at the NO-nitrided SiO₂/Si interface. NO nitridation also creates bonds inside SiO₂ films. The presence of nitrogen may explain reliability issues related to the interface, such as hot-carrier immunity, as well as bulk phenomena, such as SILC suppression.

References

[1] A. Uchiyama, H. Fukuda, T. Hayashi, T. Iwabuchi and S. Ohno, *Technical Digest of 1990 International Electron Device meeting*, (1990) p. 425.

[2] R. I. Yamada, J. Yugami and M. Ohkura, 2000IEEE international Reliability Physics Proceedings, (2000) p. 65.

[3] N. Kimizuka, K. Yamaguchi, K. Imai, T. Iizuka, C.T.Lie, R. C. Keller and T. Horiuchi, 2000 Symposium on VLSI Technology Digest of Technical Papers, (2000) p.92.

[4] E. H. Poindexter and P. J. Caplan, J. Appl. Phys. 52, 879 (1981).

[5] K. Kato, K. Takahashi, H. Nohira, N. Tamura, K. Hikazutani, S. Sano and T. Hattori, *Extended Abstract of the 2000 International Conference on Solid State Devices and Materials*, (2000) p. 423.

[6] G. M. Rigananese, A. Pasquarrello, J. C. Charlier, X. Gonze and R. Car, Phys. Rev. Lett. 79, 5174 (1997).