B-9-2 Structural and Electrical Characteristics of HfO₂ Films Fabricated by Pulsed Laser Deposition

Hiroya Ikeda*, Satoru Goto, Kazutaka Honda, Mitsuo Sakashita, Akira Sakai, Shigeaki Zaima¹ and Yukio Yasuda

Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

¹Center for Cooperative Research in Advanced Science and Technology, Nagoya University, TEL: +81-52-789-3819, FAX: +81-52-789-2760 *E-mail: ikeda@alice.xtal.nagoya-u.ac.jp

1. Introduction

A reduction of device dimensions of metal-oxide-semiconductor field-effect transistors (MOSFETs) requires ultra-thin gate oxide films. However, when the oxide thickness decreases to less than 2 nm, the leakage current density becomes large because of a direct tunneling effect. Therefore we have to replace commonly used SiO₂ films by high-dielectric-constant (high-k) materials because they can avoid the direct tunneling of carriers. From a viewpoint of thermal stability between the high-k materials and Si, gate oxides such as HfO₂, ZrO₂ and La₂O₃ have been attracted much attention [1-3]. HfO₂ has many desirable properties such as a high dielectric constant (\sim 30), high heat of formation (-271 kcal/mol), and relatively large band gap.

In this work, we have grown HfO_2 thin films by a pulsed-laserdeposition (PLD) method and show the relationship between the electrical characteristics and the crystallographic structures of HfO_2 .

2. Experimental

HfO₂ films were deposited by PLD with a HfO₂ target on p-Si (100) substrates treated by diluted HF. The HfO₂ film thickness was 15-19 nm. The oxygen gas pressure during the deposition was 10 Pa or 20 Pa and the deposition temperature was 300 °C, 400 °C and 530 °C . X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to study the structural properties. For the electrical characteristics, MOS capacitors with an Al/HfO₂/Si/Al structure were fabricated, and capacitance-voltage (C-V) and current-voltage (I-V) characteristics were measured using the MOS capacitors. The frequency in the C-V measurement was 1 MHz.

3. Results and Discussion

Figure 1 shows XRD patterns of HfO₂ films formed on Si (100) substrates at oxygen pressures. The deposition temperature was 300 °C, 400 °C and 530 °C. The XRD patterns of these samples indicate that HfO₂ films has a polycrystalline monoclinic structure. The HfO₂ film formed at 300 °C is found to have a random-oriented structure from the XRD profile. With increasing the deposition temperature, the intensity of the ($\overline{1}$ 11) peak becomes stronger. This fact means that the crystalline HfO₂ is preferentially oriented to ($\overline{1}$ 11). The diffraction peak intensity depends also on the oxygen pressure. The peak intensity for 20 Pa is weaker than that for 10 Pa.

Therefore, the O atoms in the HfO_2 film have an effect of suppressing the crystallization of the film.

Cross-sectional TEM images of HfO₂ films deposited at oxygen pressures of 10 Pa and 20 Pa are shown in Figs. 2(a) and 2 (b), respectively. The deposition temperature was 400 °C. It is found from Fig. 2 that an amorphous layer of about 2 nm thick was formed at the interface between HfO₂ and the Si substrate. However, we confirmed that no interfacial layer was observed when HfO₂ was deposited at an oxygen pressure as low as 1.3×10^{-2} Pa. These results strongly suggest that the interfacial layer consists of SiO_x.

Figure 3 (a) and 3 (b) show C-V characteristics of HfO₂ films at oxygen pressures of 10 Pa and 20 Pa, respectively. At each pressure, deposition temperature was performed at 300 °C and 530 °C. Comparing these C-V characteristics with XRD patterns shown in Figs. 1, the ($\overline{1}11$) -oriented samples have a large hysteresis in the C-V characteristics. The hysteresis indicates the existence of carrier-injection traps. On the other hand, the HfO₂ films with random-orientation do not show any hysteresis. From these results, the grain boundary structures of polycrystalline HfO₂ is considered to influence the traps of the carrier injection. The typical conduction mechanism of the HfO₂ films was found to be mainly dominated by Poole-Frenkel current (not shown). The Poole-Frenkel current was thought to be also influenced by the grain boundary structures.

4. Conclusions

We have investigated the structural and electrical characteristics of HfO_2 films deposited by a PLD method. It is found that the orientation and morphology of HfO_2 grains are strongly dependent of the deposition temperature. Moreover, the electrical characteristics depend strongly on the grain boundary structures of polycrystalline HfO_2 films.

References

- L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi and J. C. Lee, IEEE Electron Device Lett. 21, 181 (2000).
- [2] Y. H. Wu, M. Y. Yang and A. Chin, IEEE Electron Device Lett. 21, 341 (2000).
- [3] M. Copel, M. Gribelyuk and E. Gusev, Appl. Phys. Lett. 76, 436 (2000).

Figure 1 : XRD patterns of HfO_2 films formed on Si (100) substrates at O pressures of (a) 10 Pa and (b) 20 Pa. The deposition temperature was 300°C, 400°C and 530°C.

Figure 2 : Cross-sectional TEM images of HfO_2 films formed on Si (100) substrates at O pressures of (a) 10 Pa and (b) 20 Pa. The deposition temperature was 400°C.

Figure 3 : Capacitance-voltage characteristics of HfO_2/p -Si (100) samples shown in Fig. 1. The mesurement frequency was 1 MHz.