B-9-5

Suppressed Boron Penetration in p⁺ poly-Si/Al₂O₃/Si Metal-Oxide-Semiconductor System by Remote Plasma Nitridation of Al₂O₃ Surface

Heung-Jae Cho, Dae-Gyu Park, Kwan-Yong Lim, Jung-Kyu Ko, In-Seok Yeo, Jin Won Park, and Hee-Koo Yoon Advanced Process Team, Memory R&D Division, Hyundai Electronics Industries Co. Ltd., Ichon P.O. Box 1010, Ichon-si, Kyoungki-do 467-701, Korea (Phone: +82-31-630-4468, Fax: +82-31-630-4545, e-mail: hjaecho@sr.hynix.com)

ABSTRACT

We examine boron penetration in p⁺ poly-Si/Al₂O₃/n-Si pMOS capacitors with various treatments. Suppressed B penetration was attained in p⁺ poly-Si/Al₂O₃/n-Si pMOS capacitors by the surface nitridation of Al₂O₃ gate dielectric using remote plasma nitridation (RPN). The flatband shift of pMOS capacitor was negligible up to 850 °C, effectively blocking the B penetration using RPN- Al₂O₃ compared to the Al₂O₃ only or Al₂O₃/SiN_x structure. However, the gate leakage current of RPN-Al₂O₃/Si MOS capacitors was higher than that of nominal Al₂O₃ due to the reduced energy bandgap (E_g) of RPN-Al₂O₃.

INTRODUCTION

Al₂O₃ has attracted a lot of attention as an alternative gate dielectric because of good thermal stability when in direct contact with Si, excellent interface characteristics, and low leakage current [1,2]. Especially, good compatibility of Al₂O₃ with poly-Si gate allows us to maintain conventional CMOS technologies. However, the p⁺ poly-Si/Al₂O₃/Si structure showed an extraordinary positive flatband shift $(\triangle V_{FB})$ due to the B penetration into the Si substrate through Al₂O₃ at elevated temperatures [3], resulting in the critical issues for CMOS applications. In this study, we employed an unique RPN approach on the Al₂O₃ surface to block the B penetration and attained negligible $\triangle V_{FB}$ up to 850 °C.

EXPERIMENTAL

Poly-Si/RPN-Al₂O₃/Si MOS capacitors were fabricated on the n-type and p-type (100) Si substrates (8-inch dia.). HF last cleaning was carried out, followed by the atomic layer deposition (ALD) of Al₂O₃ (55 Å) gate dielectric using Al(CH₃)₃ and H₂O vapor at 350 °C. Some samples were subjected to the gate dielectric improvement anneal in O₂ at 800 °C for 30min. RPN process was employed on the Al₂O₃ surfaces at 650-850 °C using a remotely controlled He/N₂ plasma reactor. Undoped and n⁺ poly-Si were deposited for pMOS and nMOS, respectively. Then, ¹¹B⁺ was implanted on the undoped poly-Si at 4 keV and 3 × 10¹⁵ B ions/cm². To activate the implanted B ions, furnace anneals were carried out from 800 °C to 900 °C in N₂ for 30 min. For comparison, p⁺ poly-Si/Al₂O₃/SiN_x/n-Si MOS capacitors were also prepared using NH₃ anneals on the Si surfaces for SiN_x formation. Physical and electrical properties of MOS capacitors were examined.

RESULTS AND DISCUSSION

Shown in Figs. 1-2 are high-frequency C-V curves of p⁺ poly-Si/Al₂O₃/n-Si and p⁺ poly-Si/Al₂O₃/SiN_x/n-Si MOS capacitors with anneal temperatures. Our previous results showed that the $\triangle V_{FB}$ of Al₂O₃ only was +1.54V after activation anneal from 800°C to 850°C [3]. On the contrary, the $\triangle V_{FB}$ of Al₂O₃/SiN_x/n-Si was reduced to +0.15 V at the same condition, indicating somewhat retarded B penetration. However, the negative V_{FB} shift and non-ideal C-V hump of Al₂O₃/SiN_x/n-Si system was pronounced due to the SiN_x-Si interfaces. Fig. 3 exhibits C-V curves of RPN-Al₂O₃/n-Si pMOS capacitor, demonstrating negligible $\triangle V_{FB}$ (< 10 mV) up to 850°C. A normalized inversion capacitance (C_{inv}/C_{ox}) measured from this structure was about 83% at 850°C (not shown). Fig. 4 shows B profiles in the p⁺ poly-Si/RPN-Al₂O₃/n-Si structures, depicting an effective B blocking in

the Al₂O₃ up to 850°C. This may be feasible because of the thermally stable RPN-Al₂O₃ surfaces at 850°C (Fig.5). In addition, the $\triangle V_{FB}$ even after 900°C was +0.52V, that is remarkably reduced value compared to the one of Al₂O₃ after 850°C (Fig.1). Fig. 6 exhibits the conductance loss (G/ ω)-V plots of RPN-Al₂O₃/Si MOS capacitors for D_{it} extraction. The D_{it} level was decreased from ~8x10¹¹ cm⁻²-eV⁻¹ to ~2x10¹¹ cm⁻²-eV⁻¹ with activation temperatures.

Figure 7 shows J-V characteristics of n⁺ poly/Al₂O₃/p-Si nMOS capacitors as a function of RPN. An increase of leakage current (I_{LC}) at high electric field is noted with RPN, where the capacitance equivalent thickness (CET) with RPN is ~3Å thicker than that without RPN. For a better understanding of I_{LC} increase with RPN, the energy bandgap (E_g) of Al₂O₃ was measured using electron energy loss spectra of O 1s on Al₂O₃/Si-substrate [4]. The E_g of asdeposited Al₂O₃ is about 6.8 eV, while that of RPN-Al₂O₃ is 6.1eV. The E_g of those after N₂ anneal at 800°C was increased to 6.94 eV for Al₂O₃ and 6.5 eV for RPN-Al₂O₃ (Table 1).

Shown in Fig. 9 are XPS core level spectra of Al 2p and N 1s as a function of RPN on Al₂O₃. The Al 2p spectra of Al2O3 only and RPN-Al2O3 showed no distinct difference between those because the binding energy (B.E.) of Al 2p for Al₂O₃ and AlN is similar (74 - 74.7 eV). On the other hand, the N 1s spectra exhibited two clear peaks at 396 eV and 403 eV after RPN. The B.E. at 396 eV corresponds to the atomic nitrogen and that at 403 eV to the adsorbed NO or N₂O on Al₂O₃ [5]. From the presence of N 1s peak at 403 eV after anneal at 800°C, the bonding at 403 eV appears to be stronger than the one at 397 eV. Based on our observation, the N incorporation into the interstitial or substitutional site is related with the formation of AlN. A partial modification of Al₂O₃ surfaces into AlN, of which has the E_g of ~5.9 eV [6], may result in the E_g decrease into 6.1 eV. It is thought that reduced E_g by RPN, in turn, decreases the barrier height of RPN-Al₂O₃/Si junction, led to the increase of the I_{LC} in Fig. 7. This can be inferred from the increase of E_g (6.5 eV) of RPN-Al2O3 after N2 anneal at 800°C, which may be resulted from the N outdiffusion (Fig. 10). Our experiments suggest that an optimization process for a pertinent N content is required for the least B penetration and bandgap reduction.

CONCLUSION

The B penetration in the p^+ poly-Si/Al₂O₃/n-Si pMOS capacitors was effectively suppressed up to 850 °C by the surface nitridation of Al₂O₃ using RPN. We found I_{LC} increase due to the E_g reduction of RPN-Al₂O₃, that requires optimization for B suppression and bandgap engineering.

REFERENCES

- [1] D.-G. Park et al., VLSI Tech. Dig. p.46 (2000).
- [2] D. A. Buchanan et al., IEDM Tech. Dig. p.381 (2000).
- [3] D.-G. Park et al., Appl. Phys. Lett, 77, 2207 (2000).
- [4] H. Itokawa et al., Int. Conf. SSDM, p.158 (1999).
- [5] A. Pashutski et al., Surface Science, 216, 395 (1989).
- [6] Charles M. Wolfe et al., Physical Properties of Semiconductor, 340 (1989).

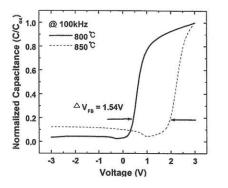


Fig. 1. C-V plots of p+ poly-Si/Al₂O₃/n-Si MOS capacitors with anneal temperatures. After Ref. [3].

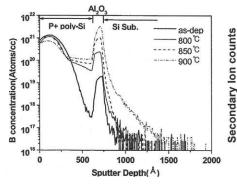


Fig. 4. B profiles in the p+ poly-Si/RPN-Al₂O₃/n-Si structure with temperatures using SIMS.

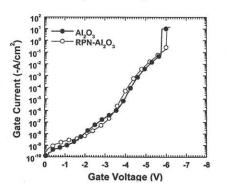
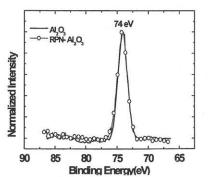



Fig.7. J-V curves of n+ poly-Si/Al₂O₃/p-Si nMOS capacitors as a function of RPN.

(a) core level spectra of Al 2p.

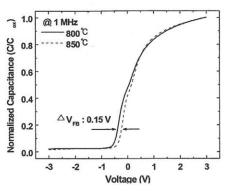


Fig. 2. C-V plots of p+ poly-Si/ Al_2O_3 /SiN_x/n-Si MOS capacitors with anneal temperatures.

Fig. 5. SIMS profiles in the p+ poly-Si/RPN- Al_2O_3/n -Si with activation anneal.

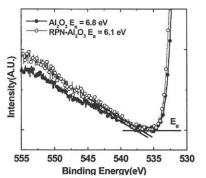
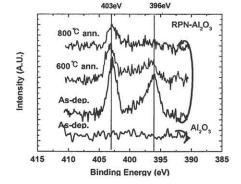



Fig. 8. XPS electron energy loss spectra of O 1s with Al_2O_3/Si sub. as a function of RPN.

(b) core level spectra of N1s.

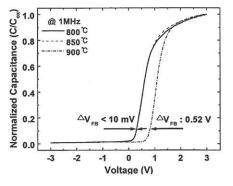


Fig. 3. C-V plots of p+ poly-Si/ RPN-Al₂O₃ /n-Si MOS capacitors with anneal temperatures.

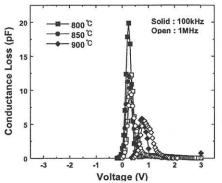


Fig. 6. Conductance loss (G/ω) -V plot of the p+ poly-Si/RPN-Al₂O₃/n-Si with activation anneal.

	As-dep.	After ann. 800℃
Al ₂ O ₃	6.8 eV	6.94 eV
RPN-Al ₂ O ₃	6.1 eV	6.5 eV

Table 1. Energy bandgap (Eg) of Al_2O_3 as a function of RPN by electron energy loss spectra.

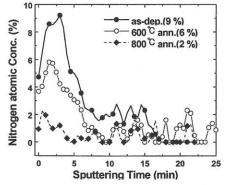


Fig. 10. AES depth profiles of RPN-Al₂O₃/Si sub. with anneal temperatures.

Fig. 9. XPS core level spectra of Al 2p and N 1s with Al_2O_3/Si sub. as a function of RPN.