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1. Introduction

The performance of GaAs-baed p-HEMTs can be
improved by increasing the In composition (x) of
In,Ga;.-As channel layer due to the improved confinement
and mobility of two-dimensional electron gas in the channel
layer. However, the In composition and the thickness of the
In,Ga,.«As channel layer used for conventional GaAs-based
p-HEMTs have been restricted below approximately 0.22
and 120 A, respectively, due to the limitation of the critical
layer thickness of the highly strained In,Ga;..As layer. To
exploit the improved transport property of the highly
strained In,Ga,..As channel layer, special techniques for the
growth of high-quality InGaAs layers having a reduced
dislocation density are required. A metamorphic buffer
growth technique is one of the techniques used for the
growth of the high-quality In,Ga,,As layers having the In
composition in excess of 0.33 [1]. A patterned substrate
growth is another technique to grow high-quality and highly
strained InGaAs layers. Using this technique, growth of
thick (more than 10 times thicker than the critical layer
thickness) In,Ga;xAs layers having a reduced misfit
dislocation density was reported [2]. The technique was
also successfully applied for devices requiring highly
strained InGaAs layers, resulting in improved device
performances [3]. In this paper, we compare the
performances of the InGaP/In,Ga; As (x=0.22~0.40)
p-HEMTs grown on patterned and non-patterned GaAs
substrates.

2. Characterization of The InGaP/In,Ga;,As p-HEMTs
The InGaP/In,Ga;As (x=0.22, 0.33, 0.40) p-HEMT
structures, shown in Fig. 1, were grown by using a
V80H-10K compound source molecular beam epitaxy at
500 °C. The thickness of the channel layers for x values of
0.33 and 0.40 are approximately 50% and 150% in excess
of the critical layer thickness (the Matthews and Blakeslee
limit), respectively. For the patterned substrate growth,
approximately 2,500 A high mesa patterns (area = 50x60
um?) used for the device active area were formed on the
GaAs substrates before the epitaxial layer growth.
Transistors having a 1.5x50 um? gate were fabricated using

a conventional optical lithography. DC characteristics
(transconductance and drain saturation current) of the
p-HEMTs grown on patterned and non-patterned substrates
are shown in Fig, 2. The highly strained InGaP/In,Ga,_,As
(x= 0.33, 040) p-HEMTs grown on non-patterned
substrates showed degraded performances due to the
increased dislocation density. The highly strained
InGaP/In,Ga; zAs (x=0.33) p-HEMTs grown on patterned
substrates showed the best performance. While the
performance of the highly strained InGaP/In,Ga;.,As
(x=0.40) p-HEMTs grown on patterned substrates degraded
due to the increased dislocation density, it was still better
than that of the InGaP/In,Ga xAs (x=0.40) p-HEMTs
grown on non-patterned substrates.
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Fig. 1. Epitaxial layer structures of the InGaP/InGa, ,As
p-HEMTs.
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Fig. 2. Normalized transconductances and drain saturation currents
(at Vg=0V) of the InGaP/In,Ga;_.As p-HEMTs.
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Microwave performances (fr and f,,,;,) of the highly
strained InGaP/Ing33Gage;As p-HEMTs grown on
patterned  substrates and  the conventional
InGaP/Ing2,Gag7sAs p-HEMTs grown on non-patterned
substrates are compared in Fig. 3. Low-frequency noise
performances of the InGaP/In,Ga;,As p-HEMTs were
characterized for the temperature range of 150 K - 440 K
and for the frequency range of 1 Hz - 53 kHz. Figure 4
shows the room temperature low-frequency input noise
spectral density (S;) of the p-HEMTSs as a function of the
frequency measured at Vg =0 V and Vg =2 V. The noise
level and the Hooge parameter of the InGaP/Ing33Gag s7As
p-HEMT grown on patterned substrate were approximately
an order of magnitude smaller than those of the
InGaP/Ing »,Gag73As p-HEMT grown on non-patterned
substrates. The low-frequency noise spectra showed pure
1/f noise behavior for most of the temperature and the
frequency ranges investigated.
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Fig. 3. Dependence of fr and f,, of the InGaP/In,Ga, As
p-HEMTS on the gate-source bias voltage.
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Fig. 4. Room-temperature low-frequency input noise spectra of the
InGaP/In,Ga,.,As p-HEMTs.

Microwave noise performance of the p-HEMTs were
measured for the frequency range of 1-3 GHz. Figure 5
shows the minimum noise figure (NF,;,) and the associated
gain (G,) of the p-HEMTs as a function of frequency
measured at Iy, = 1.5 mA and Vg = 1 V. Figure 6 shows the
drain current dependence of the minimum noise figure and
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the associated gain of the p-HEMTs measured at 2 GHz and
Vs 1 V. The minimum noise figure of the
InGaP/Ing33:Gagg7As  p-HEMT grown on patterned
substrates was lower than that of the InGaP/Ing2,Gag73As
p-HEMT grown on non-patterned substrates by more than 1
dB for most of the bias conditions.
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Fig. 5. Frequency dependence of minimum noise figure and
associated gain of the InGaP/In,Ga,As p-HEMTs (Ig = 1.5mA
and Vg = 1V).
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Fig. 6. Minimum noise figure and associated gain of the
InGaP/In,Ga, 4As p-HEMTs as a function of the drain current (f =
2GHz and V4= 1V).

4. Conclusions

Substantial improvements in device performances
including DC (g;, and Iy;,,), microwave (fr and f,,.,), and
noise characteristics of the InGaP/Ing33Gag ¢7As p-HEMTs
having a highly strained InGaAs channel layer (50% in
excess of the critical layer thickness) are reported. The
results indicate the potential of highly strained p-HEMTs
grown on patterned substrates for use in high-performance
device applications. Further studies on the dependence of
the dislocation density on layer structure, growth
temperature, and area of patterns are required to achieve
high-quality In,Ga,.,As layers having a higher strain.
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