## F-4-2

# Experimental Evidence of Inversion-Layer Mobility Lowering in Ultrathin Gate Oxide MOSFETs with Direct Tunneling Current

Shin-ichi Takagi and \*Mariko Takayanagi

Advanced LSI Technology Laboratory, Toshiba Corporation, 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582 Japan, Phone: +81-44-549-2314 Fax: +81-44-520-1257 E-mail: s-takagi@amc.toshiba.co.jp \*System LSI Research & Development Center, Semiconductor Company, Toshiba Corporation

8, Shinsugita-cho, Isogo-ku, Yokohama, 235-8522 Japan

## 1. Introduction

Low field mobility is still one of the most important device parameters for scaled MOSFETs. It has recently been reported that MOSFETs with ultrathin gate oxides allowing significant direct tunneling current can exhibit lower inversion-layer mobility, because of several plausible scattering mechanisms inherent to ultrathin gate oxides, such as remote impurity scattering [1-3], poly Si/SiO<sub>2</sub> interface roughness scattering [4] and MOS interface plasmon scattering [5]. Actually, the decrease in G<sub>m</sub> with a decrease in gate oxide thickness, Tox, has been observed in Tox region down to 1.5 nm [6]. However, the direct experimental evidence of mobility lowering with ultrathin gate oxides less than 3 nm has not been sufficient yet. This lack in the experimental result is attributable to the fact that high gate current prevents us from simply using the conventional split C-V method for mobility extraction.

This paper shows that, by modifying split C-V method under optimized device size and measurement parameters, inversion-layer mobility of MOSFETs with ultrathin gate oxides can be accurately determined, at least down to  $T_{ox}$  of 1.5 nm. It is experimentally shown, as a consequence, that mobility decreases in lower  $E_{eff}$  or  $N_s$  (surface carrier concentration) region with a decrease in  $T_{ox}$ , while little lowering of mobility is observed in higher  $E_{eff}$  or  $N_s$  region.

## 2. Measurement Method and Samples

There are mainly two difficulties in the mobility measurement for MOSFETs with high gate current. One is that the channel conductance cannot be determined simply by the derivative of  $I_D$  with respect to  $V_D$ , as shown in Fig. 1 and Fig. 2. However, if source and drain regions are symmetry for gate electrode and  $V_D$  is sufficiently small, the current from the source to the gate and the current from the drain to the gate must be identical. Therefore, the drain conductance,  $G_D$ , is determined by the derivative of  $(I_D-I_S)/2V_D$  with respect to  $V_D$ . No  $V_D$  dependence of  $G_D$ , shown in Fig. 2, validates the accuracy of measured  $G_D$ .

The other difficulty in mobility measurement is that  $C_{gc}$ - $V_G$  measurement becomes inaccurate for  $T_{ox}$  with higher leakage current, because of the significant influence of the channel resistance [7]. However, this problem is avoidable by using MOSFETs with relatively short gate length, which reduce the channel resistance. On the other hand, the gate length should be long enough to define the channel length. Fig. 3 shows  $C_{gc}$ - $V_G$  curves for L/W of 10 µm/10 µm as a parameter of measurement frequency. Almost no frequency dependence and the good agreement with  $C_{gc}$  determined by the two-frequency method [7] validate the accuracy of  $C_{gc}$ 

measurement. As a result, inversion-layer mobility can be determined by combining the above measurements of  $G_D$  and  $C_{gc}(N_s)$  under the framework of the split C-V method.

N-channel MOSFETs used in the measurement have gate oxides of pure  $SiO_2$  with  $T_{ox}$  of 3.5, 2.8, 2.2 and 1.5 nm for comparison with the universal mobility [8]. The substrate impurity concentration has been chosen to be as low as 2-3  $\times 10^{16}$  cm<sup>-3</sup> in order to reduce the influence of substrate impurity scattering. It has been confirmed from C-V characteristics that there is no significant penetration of As atoms in the poly-Si gate into substrates.

#### **3. Experimental Results**

Fig. 4 shows the experimental mobility with  $T_{ox}$  of 3.5-1.5 nm and the universal mobility, as a function of  $E_{eff}$ . It is found that the mobility with  $T_{ox}$  less than 2.8 nm decreases in low  $E_{eff}$  region with a decrease in  $T_{ox}$ , while the mobility in higher  $E_{eff}$  region is in agreement with the universal mobility, down to 1.5 nm. Since the influence of gate current on I-V characteristics is larger in higher  $V_G$  or  $E_{eff}$  region, this mobility lowering in low  $E_{eff}$  region is not attributed to any spurious effect due to gate current, but to some additional scattering mechanism inherent to thin gate oxides.

Fig. 5 shows the mobility component due to this additional scattering mechanism as function of Ns. Here, according to Matthiessen's rule, the universal mobility and mobility limited by substrate impurity scattering [8] have been subtracted from the total mobility shown in Fig. 4. The mobility component due to the additional scattering is found to be almost constant, irrespective of N<sub>s</sub>, which is not necessarily in agreement with the results of the theoretical calculations for several scattering mechanisms inherent to thin oxides [1-5]. Fig. 6 shows the Tox dependence of this mobility component and the theoretical mobility values limited by remote impurity scattering [1, 2] at Ns of 2.8 x10<sup>12</sup> cm<sup>-3</sup>. Although the experimental T<sub>ox</sub> dependence is similar with those in the theoretical calculations of remote impurity scattering [1, 2], these calculated mobility values have large variation in the amount. Thus, it is difficult, at present, to judge whether remote impurity scattering is responsible or not for the observed mobility lowering. As a result, the scattering mechanisms inherent to thin gate oxides, reported so far [1-5], seem not to be able to sufficiently explain the present experimental results in terms of the N<sub>s</sub> dependence and the amount of mobility. Further theoretical studies on scattering mechanisms are needed to identify the physical origin of the mobility lowering.

### 4. Conclusion

It was experimentally found that inversion-layer electron mobility in the  $T_{ox}$  region less than 3 nm decreases in lower  $N_s$  or  $E_{eff}$  region with a decrease in  $T_{ox}$ . This fact means the existence of some additional scattering mechanism associated with thinning gate oxides.

#### Acknowledgement

The authors would like to thank A. Toriumi, N. Shigyo and A. Kurobe for their continuous support and stimulating discussion. **References** [1] M. Krishnan et al., *IEDM*, (1998)571 [2] N.



Fig.1 Schematic diagram of current flow of MOSFETs with high gate tunneling current. Here,  $I_S < 0$  and  $I_D > 0$ .



Fig.3  $C_{gc} - V_G$  characteristics of MOSFETs with L/W of 10  $\mu$ m/10  $\mu$ m and T<sub>ox</sub> of 1.5 nm.



Fig.5 Mobility component of additional scattering mechanism, determined by Matthiessen's rule, as a function of N<sub>s</sub>.

Yang et al., *TED*, 47(2000)440 [3] Y. Kamakura et al. *IEDM*, (2000)113 [4] J. Li et al, *JAP*, 62(1987)4212 [5] M. Fischetti, *JAP* 89(2001)1232 [6] G. Timp et al. *IEDM*, (1998)615 [7] N. Yang et al, *TED*, 46(1999)1500 [8] S. Takagi et al., *TED*, 41(1994)2263



Fig.2 Drain, source and gate current (left axis) and drain conductance (right axis) as a function of  $V_G$ .



Fig.4 Inversion-layer electron mobility as a function of  $E_{eff}$  with  $T_{ox}$  of 3.5 – 1.5 nm. A solid line means the universal mobility



Fig.6 Mobility component of additional scattering term at  $N_s$  of 2.8 x10<sup>12</sup> cm<sup>-3</sup> as a function of  $T_{ox}$ . Solid lines show the calculated mobility by remote impurity scattering [1,2].