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Abstract - In the manufacturing ofVLSI circuits,
engineering designs should take into consideration
random variations arising fromprocessing. In this
paper, statistical modeling of MOS devices is
reviewed, and effective and practical models are
developed to predict the performance spread (i.e.,
parametric yield) of MOS circuits due to the
process variations. To illustrate their applications,
the models are applied to the 0.25 pm CMOS
technology, and measured data are included in
support of the model calculations.

I. Introduction

The performance of any MOS devices and
integrated circuits is influenced by two different
variations due to MOS processing uncertainties:
interdie variation (i.e., chip to chip variation) and
intradie variation (i.e., vaiiation within the same
chip, or called MOS mismatch). In digital circuits,
where the outputs are dependent upon the raw
value of the transistor current, the circuit
performance spread is mostly effected by the
interdie variation. On the other hand, the intadie
variation is more important for analog circuits,
where the outputs depend mostly on the ratio of
transistors rather than their absolute value.

In this paper, the concept of statistical
modeling is presented, and a new and practical
MOS model to account for the interdie variation is

. developed. The model is then applied to the 0.25
pm CMOS technology to illustrate their
applications in the manufacturing of MOS ICs.

II. Statistical Modeling for Interdie Variation

In our approach, a set of simulated test data is
extracted first from the parametric test data using
appropriate statistical analysis. Such a data has a
much smaller size than the paramehic test data, yet
still accurately representing the MOS behavior.
The simulated test data is then optimized and used
to generate a set of critical parameters of a MOS
model, such as BSIM3v3 [1]. Circuit simulations
are then carried out to predict the circuit
performance spreads.

Fig. I shows the flowchart of the present
method (solid arrows) and conventional methods

(dashed arrows). While both methods use similar
statistical analysis, the main difference is that in
the present approach the simulated test data (i.e.,
D* in flowchart) is fust extracted from
measurements, whereas in the conventional
approach the device model (i.e., BSIM3v3)
parameters (i.e., P in flowchart) are first optimized
from measurements. Using the matrix size given
in the flowchart, it is evident that the present
approach can greatly reduce the number of
optimizations needed to generate the MOS models
for circuit simulation. Also, the optimized device
models (i.e., Pt in flowchart) resulted from the
present approach can better reflect the physical
behavior of the MOS devices measured.

Figure l. Flowchart for conventional (dashed arrows) and
present (solid arrows) statistical modeling approaches.

The compact MOSFET model used in this
study is BSIM3v3 model. A technique for
selecting and extacting critical BSIM3 model
parameters via optimization algorithms from the
parameftic test data is first discussed. Generally,
the functional performances of MOSFET digitai
circuits are determined by three transistor
characteristics: saturation current Isol (the drain
current when both drain voltage V6, and gate
voltage V* equal to supply voltage),
transconductance p (defined as p : gm'o x
106/Vd' where gm'o is the maximum
tansconductance), and threshold voltage Vr.
These data are fpically measured on five chips
per wafer. On each chip, transistors of various
geometries are measured, and NMOS and PMOS
fransistors having the following three geometries
are considered : long- charureVwide- channel, short-
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channeVwide-channel, and short-channeVnarrow-
channel devices (see Table l).

Table 1. NMOS and PMOS device geometries considered for
the extraction of critical BSIM3 model parameters.

The goal of the statistical model is to
generate a few but statistically sufficient numbers
of device models that can resemble the device
statistics extracted from large sets of
mgasurements. These device models, when
implemented in circuit simulation, shall be able to
predict the variance of circuit performance (i.e.,
paramefric yield).

To improve circuit simulation efficiency, the
sample of device models should be as few as

possible while maintaining valid device statistics.
An advanced sampling technique, Latin
Hypercube Sampling (LHS) technique [2], is used
in this study in order to reduce the number of
simulation samples. By using the LHS, we are able
to use only a few tens of samples to achieve the
same effect that would require hundreds of
samples using simple random sampling. The
transistor models derived from this approach can
then be incorporated into circuit simulation.

III. Model Applications in Digital Circuits

To illustrate the applications in circuit design,
the proposed statistical model was applied to a
0.25pm CMOS process at Agere Systems,
Orlando, Florida, USA and to estimate the delay
time bounds of a CMOS ring oscillator circuit
consisting of 501 stages of inverter. Data were
collected on dies fabricated during one month
from a single fabrication line. In the circuit, the
size (width/length) of the NMOS is 2.66/0.32, and
the size (width/length) of the PMOS is 3.66/0.28.
Figure 2 shows the histogram plots of the circuit
delay times measured from about 700 inverterring
oscillator circuits. Also included in the figure are
the results obtained from the present and the
existing worst-case models. Clearly, the present
model generates more accurate lower and upper
bounds than the existing model.

The delay time spread of the oscillator was
also simulated using the statistical model
developed with 30 sample devices, as shown in

Figure 3. It is demonstrated that the statistical
model is in good agreement with the measured
delay time spread and gives much more
quantitative and precise predictions than the worst-
case analysis. Moreover, this is achieved with a

minimal computation resource of only 30 sample

devices.
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Figure 2. Measured delay time spreads, and the delay time
bounds predicted by the proposed and existing worst-case
analyses for a 501-stage inverter ring oscillator.
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Figure 3. Measured delay time distribution (bars and the dotted
line) of a 501-stage inverter ring oscillator compared with the

results of the statistical simulation (solid line). The upper and

lower worst-case bounds are also shown.
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