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1. Introduction

Demand for system LSI has increased recently for use
in lots of different products, such as digital AV equipment
and mobile phones. System LSI requires both
high-performance logic and high-density embedded mem-
ory, as illustrated in Fig. 1. However, it is very difficult to
fabricate a single chip that has both high-performance logic
and high-density memory. This is because a conventional
memory fabrication processes, especially capacitor proc-
esses, require use of high temperatures after MOSFET fab-
rication, and such high temperatures lead to MOSFET deg-
radation due to impurity deactivation. This can be avoided
by fabricating embedded memory in a low-temperature
process. In this paper, we describe an approach that allows
fabrication of embedded memory at low temperature, using
both a MIM (Ru/Ta,Os/Ru) capacitor [1] and low thermal
budget SiN CVD. We demonstrated the impact of this low
thermal budget process on MOSFET performance in an
experiment.

2. DRAM Process Integration

Figure 2 shows a schematic drawing of a DRAM
component after BL formation. A tungsten poly-metal gate
[2] and tri-layer barrier metal technology for a tungsten
contact [3] were employed. In order to create a self-aligned
storage node contact, LPCVD-SisN, films with good
step-coverage were used as an etching stopper for bit-line
cap and sidewalls. Although use of LPCVD-Si;N, is attrac-
tive because of its high step-coverage, its high-temperature
and long-lasting thermal sequence increases the thermal
budget drastically after final activation and degrades device

performance. We overcame this problem by applying .

low-temperature LPCVD-Si;N, technology together with a
hexachlorodisilane (HCD) gas source [4] instead of dichlo-
rosilane (DCS), the conventional source, thereby success-
fully lowering the process temperature from more than
700°C to less than 650°C. Figure 3 shows the leakage cur-
rent distribution between the BL and SN, measured using a
4M-bit test vehicle over the entire wafer to which the
low-temperature HCD-Si;N, was applied as an SAC etch-
ing stopper. No SN-BL short caused by the SAC process
was observed, indicating the adequate selectivity of the
HCD-SisN, film during SAC etching. Furthermore, the
process temperature of capacitor formation was success-
fully lowered with Ru/Ta,0s/Ru MIM capacitor technology
[1] keeping an adequate storage capacitance of more than
25{F/cell. A DRAM cell array containing the MIM capaci-
tor is shown in Fig.4.

3. Thermal Budget Impact on Transistor Performance
The impact of lowering the process temperature was
clarified by measuring peripheral devices with a 5.2-nm
gate dielectric. Figure 5 shows the lon vs. Ioff characteris-
tics for both NMOS and PMOS at Vds=2.0 V under differ-
ent thermal process temperatures. In this figure, less than
600°C means the maximum process temperature is limited
because of the MIM Ta,Os capacitor fabrication process,
and more than 600°C indicates that the LPCVD-Si;N,
deposition process gives the highest temperature. Lowering
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the process temperature was observed as having a strong
impact on performance. By using 600°C as the process
temperature, drive currents for both NMOS and PMOS at
Ioff=10 pA/um improved by about 10% and 13%, respec-
tively, compared to those for the conventional nitride proc-
ess at 700°C. This seems to be mostly caused by improve-
ment of dopant deactivation.

Figure 6 shows active contact resistance as a function
of applied voltage. In the 700°C process, contact resis-
tances to both N™ and P* diffusions increased drastically as
applied voltage decreased, that is, these contacts show
strong non-linear characteristics even though a thermally
stable metal contact process was implemented [4]. This
non-linearity sometimes became a serious problem in cir-
cuit design. Since no TiSi, agglomeration or TiN barrier
property problem was observed by TEM on the contact
bottom, the non-linear characteristics originate from low
active dopant concentration at the interface between the
substrate and TiSi, layer as a result of dopant deactivation
or its absorption into TiSi,. With the decrease of the process
temperature from 700°C to less than 600°C, not only con-
tact resistance but also its ohmic characteristics were im-
proved significantly, resulting in less deterioration of tran-
sistor performance. Sheet resistances of N and P* diffu-
sions also indicate less dopant deactivation when a
low-temperature process was used, as shown in Fig. 7.

P'-poly gate depletion is another serious problem in
dual work-function devices. Figure 8 shows C-V curves of
PMOSFETs with L/W=100/100 um at different process
temperatures. The 700°C process clearly indicates a higher
poly depletion rate, and by lowering the temperature to be-
low 650°C, effective oxide thickness was improved by
about 0.4 nm.

Finally, in order to evaluate circuit performance for a
low-temperature nitride process, the propagation delay time
(Tpa) of an inverter ring oscillator was measured. Figure 9
shows T4 as a function of F/O at Vcc=2.0 V. The gate
length ofP MOSFETs in the inverter circuit was 0.16 um, and
the maximum process temperature after final activation was
650°C. A time of 125 ps was obtained for Tpq of F/O=3 and
this is fast enough for high-density DRAM-based system
LSI

4, Conclusion

We have clarified the impact of lower process tem-
peratures on device performance. By applying a
low-temperature nitride deposition process and MIM ca-
pacitor formation process, deterioration of peripheral de-
vice performance was effectively suppressed; as a result, a
time of 125 ps was obtained for T,y of F/O=3. This tech-
nology is a promising candidate for application in fabricat-
ing future system LSI chips.

References
[17Y. Fukuzumi et al., ITEDM Tech. Dig., p.793, 2000.
[2]M.T.Takagi et al., [EDM Tech. Dig., p.455, 1996
[3]T. Miyashita et al., [EDM Tech. Dig., p.361, 2000.
[4]M. Tanaka et al., Symp. on VLSI Tech. Dig., p.47, 1999,
[5]M.Tanaka et al., J. Electrochem. Soc., v.147 (6), p.2284, 2000.



Low-temperature cap and spacer SiN

Large

Embedded memory size

Small

3 g
& Future ™%

\System L8

SA SN contac

|SA poly plug|

Slow

Propagation delay

Fig. 1 Development toward future system LSL.

% aM-bit cell array
2 d_Cap-SiN
'WBL
1 A-SN
contact
b0
i g
2
" Voltage:1.4lv
1e-13 1e-12 1e-11

SiN leakage current (A)
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Fig. 6 Contact resistance of (a) BL-N* and (b) BL-P* as a function of
applied voltage under different SiN-CVD conditions. The contact size

is 0.2 um?.
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Fig. 8 C-V curves of boron-doped P* polysilicon gate
at different SIN-CVD conditions.
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Fig. 5 Relationship between Ion and [off of (a) NMOSFET
and (b) PMOSFET under different SiN-CVD conditions.
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Fig. 9 Ring oscillator measurements. A
0.16-um MOSFET was used.



