B-9-3
Impact of Thermal Budget Reduction on MOSFET Performance to Achieve High-speed and High-density DRAM-based System LSI

***K. Hashimoto, *Y. Kohyama, T. Tanaka, and Y. Nara
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya Atsugi 243-0197, Japan
Phone: +81-46-250-8215, Fax: +81-46-250-8804, E-mail: yeji@lab.fujitsu.co.jp
*Toshiba Corporation Semiconductor Company, 8 Shinsugita-cho, isogo-ku, Yokohama 235-8522, Japan
**Winbond Electronics Corp., No.9 Li Hsin Rd. Science-Based Industrial Park Hsinchu, Taiwan, R.O.C.
***Fujitsu Laboratories Ltd., 50 fuchigami, akiruno 197-0833, Japan

1. Introduction
Demand for system LSI has increased recently for use in lots of different products, such as digital AV equipment and mobile phones. System LSI requires both high-performance logic and high-density embedded memory, as illustrated in Fig. 1. However, it is very difficult to fabricate a single chip that has both high-performance logic and high-density memory. This is because a conventional memory fabrication process is sensitive to process parameters. In particular, temperature, pressure, and gas composition are the most important factors. High-performance logic fabrication processes, however, require use of high temperatures after MOSFET fabrication, and such high temperatures lead to MOSFET degradation due to impurity deactivation. This can be avoided by fabricating embedded memory in a low-temperature process. In this paper, we describe an approach that allows fabrication of embedded memory at low temperature, using both a MIM (Ru/TaOx/Ru) capacitor technology [1] and low thermal budget SiN CVD. We demonstrated the impact of this low thermal budget process on MOSFET performance in an experiment.

2. DRAM Process Integration
Figure 2 shows a schematic drawing of a DRAM component after BL formation. A tungsten poly-metal gate [2] and tri-layer barrier metal technology for a tungsten contact [3] were employed. In order to create a self-aligned storage node contact, LPCVD-Si3N4 films with good step-coverage were used as an etching stopper for bit-line cap and sidewalls. Although use of LPCVD-Si3N4 is attractive because of its high step-coverage, its high-temperature process, and LPCVD-Si3N4/low-temperature nitride process sequence increases the thermal budget drastically after final activation and degrades device performance. We overcame this problem by applying low-temperature LPCVD-Si3N4 technology together with a hexachlorodisilane (HCD) gas source [4] instead of dichlorosilane (DCS), the conventional source, thereby successfully lowering the process temperature from more than 700°C to less than 650°C. Figure 3 shows the leakage current distribution between the BL and SN, measured using a 4M-bit test vehicle over the entire wafer to which the low-temperature HCD-Si3N4 was applied as an SAC etching stopper. No SN-BL short caused by the SAC process was observed, indicating the adequate selectivity of the HCD-Si3N4 film during SAC etching. Furthermore, the process temperature of capacitor formation was successfully lowered with LPCVD-Si3N4/Ru MIM capacitor technology [1] keeping an adequate storage capacitance of more than 25F/cell. A DRAM cell array containing the MIM capacitor is shown in Fig.4.

3. Thermal Budget Impact on Transistor Performance
The impact of lowering the process temperature was clarified by measuring peripheral devices with a 5.2-nm gate dielectric. Figure 4 shows the ION vs. Vdd characteristics for both NMOS and PMOS at Vdd=2.0 V under different thermal process temperatures. In this figure, less than 600°C means the maximum process temperature is limited because of the MIM Ta2O5 capacitor fabrication process, and more than 600°C indicates that the LPCVD-Si3N4 deposition process gives the highest temperature. Lowering the process temperature was observed as having a strong impact on performance. By using 600°C as the process temperature, drive currents for both NMOS and PMOS at Vdd=10 pA/um improved by about 10% and 13%, respectively, compared to those for the conventional nitride process at 700°C. This seems to be mostly caused by improvement of dopant deactivation.

Figure 6 shows active contact resistance as a function of applied voltage. In the 700°C process, contact resistances to both N+ and P+ diffusions increased drastically as applied voltage decreased, that is, these contacts show strong non-linear characteristics even though a thermally stable metal contact process was implemented [4]. This non-linearity sometimes became a serious problem in circuit design. Since no TiSi, agglomeration or TiN barrier problem was observed by TEM on the contact bottom, the non-linear characteristics originate from low-temperature nitride deposition at the interface between the substrate and TiSi, layer as a result of dopant deactivation or its absorption into TiSi,. With the decrease of the process temperature from 700°C to less than 600°C, not only contact resistance but also its ohmic characteristics were improved significantly, resulting in less deterioration of transistor performance. Sheet resistances of N+ and P+ diffusions also indicate less dopant deactivation when a low-temperature process was used, as shown in Fig. 7.

P+-polo gate depletion is another serious problem in dual work-function devices. Figure 8 shows C-V curves of MOSFETs with 100/100 um at different process temperatures. The 700°C process clearly indicates a higher poly depletion rate, and by lowering the temperature to below 650°C, effective oxide thickness was improved by about 0.4 nm.

Finally, in order to evaluate circuit performance for a low-temperature nitride process, the propagation delay time (Tpd) of an inverter ring oscillator was measured. Figure 9 shows Tpd as a function of F/O at Vcc=2.0 V. The gate length of MOSFET at a minimum circuit was 0.16 um, and the maximum process temperature after final activation was 650°C. A time of 125 ps was obtained for Tpd of F/O=3 and this is fast enough for high-density DRAM-based system LSI.

4. Conclusion
We have clarified the impact of lower process temperatures on device performance. By applying a low-temperature nitride deposition process and MIM capacitor formation process, deterioration of peripheral device performance was effectively suppressed, as a result, a time of 125 ps was obtained for Tpd of F/O=3. This technology is promising candidate for application in fabricating future system LSI chips.

References
Fig. 1 Development toward future system LSI.

Fig. 2 Sample structure and fabrication process.

Fig. 3 Distribution of leakage current between bit-line and storage node.

Fig. 4 TEM cross-sectional view of DRAM cell array.

Fig. 5 Relationship between Ion and Ioff of (a) NMOSFET and (b) PMOSFET under different SiN-CVD conditions.

Fig. 6 Contact resistance of (a) BL-N* and (b) BL-P* as a function of applied voltage under different SiN-CVD conditions. The contact size is 0.2 \(\mu \)m².

Fig. 7 Distribution of sheet resistance at (a) N⁺ diff. and (b) P⁺ diff. under different SiN-CVD conditions.

Fig. 8 C-V curves of boron-doped P⁺ polysilicon gate at different SiN-CVD conditions.

Fig. 9 Ring oscillator measurements. A 0.16-um MOSFET was used.