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1. Introduction

In the fabrication processes of MOS devices with very
thin gate insulators of SiO,, N atoms are introduced in the
Si0, region to improve device characteristics by using
various nitridation processes, e.g. thermal annealing in NO
or N;O gas ambients and remote plasma nitridation. By
thermal nitridation, N atoms are incorporated in the region
near the SiO,/Si interface and are coordinated to three or
two Si atoms [1]. Control of concentration, position and
coordination of N atoms is very crucial, because enough
amount of incorporated N atoms to prevent penetration of
boron atoms from the p'-gate may degrade reliability of
devices due to negative bias temperature instability (NBTI).
Several researchers ascribed the acceleration of NBTI by the
nitridation to some reaction between N atoms and water
related materials in the SiO, layer near the interface [2].
However, we have not yet reached a consensus. Bonding
characteristics of N atoms in the SiO, region should be
clarified to understand the mechanisms of N incorporation
under nitridation process and of reliability degradation. In
this paper we investigate stabilities and electronic states of
variety of three- and two-coordinated-N-configurations near
the Si0,/Si(100) interface to understand segregation of the
N atoms at the interface and the degradation with hole trap
site generation.

2. Methodology

A calculation method we have used here is the first
principles molecular dynamics method based on the density
functional theory and employing pseudopotentials.
Pseudopotentials of O 2p, N 2p and H 1s orbitals are
non-norm conserving Venderbilt type [3] and others are
norm conserving. Cut off energies for plane wave expansion
of wave functions and charge densities are 25 and 144 Ry,
respectively. For exchange-correlation potential, we added a
generalized-gradient-approximation-correction [4] to the
local density term. A repeated slab model is used to simulate
interface structures. Two kinds of abrupt and perfect
Si0,/8i(100) interface structures, i.e. tridymite- and quartz-
Si0,/Si models [5], are used to form Si,=Ne and Si,H=N
configurations by substituting an N atom or an H-terminated
N atom for an O atom in the models. Here, * denotes a
dangling bond. Other matrices are interface defect structures
of Si-dangling bonds without or with backbond oxygen
(SDBO, SDBI1) [6] (Fig. 1), which are modeled by
modifying the structure of the tridymite-SiO,/Si model. We
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Fig.1. Two SiO,/Si models with interface defects. SDB0
and SDB1 indicated by arrows in (a) and (b) are the Si
atoms each of which has a dangling bond. SDB1 has a
backbond O atom, but SDB0 dose not have.

substituted an N atom for a Si atom of these matrices to
form three-coordinated N configurations of Si;=N, Si,0=N
and O;=N. The interface Si(100) unit cells are 2x2 and
v/2x2+/2 for the tridymite- and the quartz-SiO,/Si models,
respectively.

3. Results and Discussion

We have optimized four kinds of Si,=Ne and their
H-terminated configurations. We label the Si;=Ns
configurations as shown in Fig. 2. Substitution of an N atom
for an O atom hardly changes surrounding atomic positions.
The Si,=N- at the interface ((T|Q)-a) is the most stable, and
Si;=Ne becomes less stable as it goes far from the interface.
Here ((T|Q)-a) denotes (T-a) or (T-b). Relative energies of

Quartz-Si0,/Si(100)

Fig. 2. Labels of the O sites which are substituted by an
N atom to form Si,=Ne configurations in the tridymite-
Si0,/Si (left hand -side) and in the quartz-SiO,/Si (right
hand side) interface structures. “2+” and “4+” on Si
atoms denote anion numbers which coordinate to the Si.



(T-b), (T-c) and (T-d) to (T-a) are +0.38, +1.00 and +1.05 eV,
respectively, and those of (Q-b), (Q-c) and (Q-d) to (Q-a)
are +0.51, +1.19, and +1.01 eV, respectively. These Si;=Ne
configurations are classified by the bonding Si atoms as
((TIQ)-2) Si¥*-N-Si*', ((T|Q)-b) Si**-N-Si*', and ((T|Q)-c
and (T|Q)-d) Si**-N-Si*", where superscripts correspond to
the numbers of bonding anions to the Si atoms. According
to these results, we can assume that a Si,=Ne around the
interface have a tendency to move in to the interface by
thermal annealing. An Si'*-N-Si** coordination that can be
generated by insertion of an N atom into an Si-Si bond in
the substrate near the interface is not stable because of
accumulated stress to the bonding Si atoms, but could be
stabilized if the stress were released enough. Si;=Ne
configurations have gap states which trap holes.
Terminating the dangling bond with an H atom eliminates
the gap state. We have estimated dissociation energies of H
atoms in the Si;H=N configurations, which are shown in Fig.
3. Imterface Si;H=N configurations have smaller H-N
dissociation energies. Si,H=N becomes stable as it goes
deeper in the SiO; region. The dominant reason is because
Si-N-Si bond angles after H-termination can be easily
relaxed in the deeper SiO; region than at the interfaces.
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Fig. 3. H-N dissociation energies of Si,H=N
configurations. H energy E[H] is taken from the value
of H in a Si;N,0 crystal.

Next, we have optimized three Si;=N, one Si,O=N and
one O;=N configurations as shown in Fig. 4. The O;=N
configuration (d) is very unstable compared to others, e.g. to
the configuration (a) by 7.7 eV. The Si;=N configurations
are more stable compared to the Si;O=N (a’) by 0.6-2.4 eV.
Among three Si;=N configurations, the interface Si;=N (a)
is the most stable, followed in order by the second layer
Si;=N (b) and the third layer Si;=N (c). The interface Si;=N
configuration of (a) has no gap states. Substituted N atoms
in the configurations (b) and (c) generate dangling bonds at
the Si atoms near the N atoms, and the dangling bonds
create gap states and work as hole trapping sites.
Termination of a dangling bond with an H atom eliminates
the gap state. The N atoms around the interface would be
stabilized and have no gap states by substituting for SDB0’s
and forming Si;=N if they exist around.
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Fig. 4. Three-coordinated-N-configurations. ((a) Si;=N
at the interface where N is substituted with SDBO, (a’)
Si,0=N at the interface where N is substituted for
SDBI, (b) Si;=N at the second layer in the substrate, (c)
Siz=N at the third layer in the substrate, and (d) Os=N in
the SiO, region

4. Summary

When incorporated N atoms come to near the interface
through the SiO, layer, they would prefer energetically to
form a Si,=Ne configuration at the interface. By annealing,
these N would be more stabilized by substituting for
SDBO0’s if they exist around, or may be stabilized by
reconfiguring surrounding networks to form a Si;=N. Other
Si,=Ne configuration would be stabilized by terminating
their dangling bonds with H atoms. However interface
Si,=N-H configurations have weaker N-H bonding energies.
These H atoms may be dissociated with relatively smaller
activation energies and will leave Si;=Ne, which have gap
states for hole trapping.
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