C-9-1

0.1 µm pMOSFETs with SiGe-Channel and B-Doped SiGe Source/Drain Layers

Doohwan LEE^a, Masao SAKURABA^a, Junichi MUROTA^{a,*} and Toshiaki TSUCHIYA^b

^a Laboratory for Electronic Intelligent Systems, Res. Inst. of Electr. Comm., Tohoku Univ.,

2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

^b Interdisciplinary Faculty of Science and Engineering, Shimane Univ.,

1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan

*Corresponding Author: Tel&Fax: +81-22-217-5548, E-mail: murota@riec.tohoku.ac.jp

1. Introduction

In order to realize the optimized MOSFET structure with sub-0.1 μ m gate length, a super self-aligned ultrashallow junction formation technique instead of the conventional ion implantation method is essential. In the devices fabricated with such a new technique, the precise diffusion control of dopant is extremely important because the source/drain punch-through, which is an especially crucial problem for those devices, should be suppressed [1-2]. Moreover, the improvement of the effective carrier mobility in the channel region is also indispensable.

In this study, the fabrication of 0.1 μ m Si_{1-x}Ge_x-channel (x=0-0.5) pMOSFET with ultrashallow junction source/drain formed by selective in-situ B-doped Si_{0.55}Ge_{0.45} chemical vapor deposition (CVD) has been investigated.

2. Fabrication process

The schematic device structure and the cross-sectional SEM micrograph of the 0.12 μ m Si_{0.5}Ge_{0.5}-channel S³EMOSFET are shown in Fig. 1. At first, high quality 10 nm-thick Si/ 5-7 nm-thick Si_{1-x}Ge_x (x=0-0.5)/ 100 nm-thick Si heterostructure was epitaxially grown on 1-2 Ω cm n-type Si(100) surface in a SiH₄-GeH₄-H₂ gas mixture using an ultraclean hot-wall low-pressure CVD (LPCVD) system, which was made ultrahigh vacuum compatible with gate valves and a turbo-molecular pump system [3-4]. A field oxide was formed on the heterostructure at 400°C by CVD

and a 4 nm-thick gate oxide was grown by wet oxidation at 700°C. Then, 300 nm-thick in-situ B-doped poly Si as a gate was deposited in a Si₂H₆-B₂H₆-H₂ gas mixture by LPCVD at 550°C followed by thermal wet oxidation to form an etching mask. The mask was patterned by photolithography using a stepper and the gate length reduction was done by resist-ashing with oxygen plasma. After the oxide pattern formation by wet etching, the poly Si was etched using highly selective electron-cyclotron-resonance chlorine plasma [5]. Oxidation of gate and S/D surfaces and Si-nitride deposition by CVD were performed at 700°C, followed by dry etching to form nitride sidewall, which is a protective film for the sidewall oxide. After removing the oxide on S/D regions and the nitride on gate sidewalls, the in-situ B-doped Si_{0.55}Ge_{0.45} was selectively and epitaxially grown on the S/D regions in a SiH₄-GeH₄-B₂H₆-H₂ gas mixture at 550°C by LPCVD [6-7]. Covering with CVD SiO₂, the B diffusion from the B-doped Si_{0.55}Ge_{0.45} into Si was performed at 750°C for 3 hours. After the CVD SiO₂ sidewall formation by dry etching, tungsten was selectively deposited on the B-doped Si_{0.55}Ge_{0.45} surfaces by CVD in order to reduce the parasitic resistance [1-2].

3. Results and discussion

Typical drain-current-voltage of a $Si_{0.5}Ge_{0.5}$ -channel pMOSFET with a gate length of 0.12 µm is shown in Fig. 2. The maximum saturation drain current (I_D) is estimated as

about 620 μ A/ μ m at the gate voltage (V_G) = the drain voltage (V_D) = -2 V. The subthreshold slope was evaluated as 89 and 130 mV/decade at V_D = -50 mV and -1.5 V, respectively. The subthreshold slope of the Si_{0.5}Ge_{0.5}-channel devices with longer gate lengths than 0.12 μ m, for example 0.16 μ m, is smaller than 77 mV/decade even at V_D = -1.5 V. The drain current drivability of the Si_{1-x}Ge_x-channel S³EMOSFETs with Ge fraction of 0.4 or 0.5 and with gate length of 0.51 or 0.46 μ m, respectively, is significantly improved by a factor of about 30%, compared with the conventional Si-channel device with a 0.51 μ m gate length, and their maximum linear transconductance at V_D = -50 mV is enhanced by about 65%. It suggests that the effective mobility of holes in the Si_{1-x}Ge_x-channel significantly increases compared with that in the surface-Si-channel as reported earlier [4-5,8].

The dependences of threshold voltage (V_T) on gate length

Fig. 2. Typical drain-current-voltage characteristics of 0.12-µm Si_{0.5}Ge_{0.5}-channel S³EMOSFET.

Fig. 3. Dependences of the threshold voltage when $V_D = -50$ mV on the gate length of the Si_{1-x}Ge_x-channel S³EMOSFETs.

of the Si1-xGex-channel S3EMOSFETs are shown in Fig. 3 with Ge fraction as a parameter. The change of $V_{\rm T}$ with increasing Ge fraction of Si1.xGex channel is resulted from the valence band shift in the Si1-xGex channel. It is also found from the figure that the roll-off characteristics are improved for the Si1-xGex-channel MOSFETs, compared with the conventional Si-channel MOSFETs. This result indicate that, although the Si_{1-x}Ge_x-channel MOSFET is a buried-channel type, the short channel effect in the Si_{1-x}Ge_x-channel S³EMOSFETs is well suppressed compared to the surface-channel type of Si-channel devices. This is due to the ultrashallow junction depth, estimated as approximately 20 nm, i.e., slightly below the Si1-xGex/buffer Si interface, and the suppression of the drain and source depletion-layer widths into the SiGe channel resulting from the reduction of the energy band gap by introducing Ge.

4. Conclusion

We have successfully fabricated 0.1 μ m Si_{1-x}Ge_x-channel pMOSFETs with super self-aligned ultrashallow junction source/drain, formed by the selective in-situ B-doped Si_{0.55}Ge_{0.45} epitaxy on source/drain by CVD and subsequent diffusion. The Si_{1-x}Ge_x-channel S³EMOSFETs with x = 0.4-0.5 show higher performance than the Si-channel devices. Despite the buried-channel type, the short channel effect is suppressed in the Si_{1-x}Ge_x-channel Si MOSFETs due to the ultrashallow junction depth and the suppression of the drain and source depletion-layer widths resulted from the narrow band gap of Si_{1-x}Ge_x.

Acknowledgements

This study was partially supported by the Public Participation Program for the Promotion of Info. Communications Technology R&D from the Telecommunications Advancement Organization of Japan, and a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

J. Murota, M. Ishii, K. Goto, M. Sakuraba, T. Matsuura, Y. Kudoh and M. Koyanagi, *Proc. of the 27th ESSDERC*, Germany, September 22-24,1997, pp. 376-379.

[2] T. Yamashiro, T. kikuchi, M. Ishii, F. Honma, M. Sakuraba, T. Matsuura, J. Murota and T. Tsuchiya, Mater. Sci. Eng., **B89** (2002) pp 120-124.

[3] J. Murota and S. Ono, Jpn. J. Appl. Phys., Pt. 1, 33 (1994) pp. 2290-2299.

[4] K. Goto, J. Murota, T. Maeda, R. Schürtz, K. Aizawa, R. Kircher, K. Yokoo and S. Ono, Jpn. J. Appl. Phys., Pt. 1, 32 (1993) pp 438-441.

[5] T. Matsuura, H. Uetake, T. Ohmi, J. Murota, K. Fukuda, N. Mikoshiba, T. Kawashima and Y. Yamashita, Appl. Phys. Lett., **56** (1990) pp. 1339-1341.

[6] F. Honma, J. Murota, K. Goto, T. Maeda and Y. Sawada, Jpn. J. Appl. Phys., Pt. 1, 33 (1994) pp. 2300-2303.

[7] J. Murota, Y. Takasawa, H. Fujimoto, K. Goto, T. Matsuura and Y. Sawada, J. Phys. IV France, 5 (1995) pp. C5-1165-1172.

[8] P. M. Garone, V. Venkataraman and J. C. Sturm, IEEE Electron Device Lett., 13 (1992) pp. 56-58.