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1. Introduction
Reduction of the SOI thickness ("sor) in SOI CMOS de.

vices is required not only to realize frrlly-depleted FETs but
also to improve the performance of partially-depleted (PD)
FETs through reduced source/drain (S/D) sidewall junc-
tion capacitance (C;"*,") *d suppression of the floating-
body effect [1]. On the other ha,nd, aggressive ?gor re-
duction increases the parasitic S/D series resistance (n"a)
[2]. To solve this problem, the eleriated S/D structure has
been strongly required for high performa,nce ultrathin SOI
CMOS [2]. As the most promising process to realize the
structure, selective epitaxial growth (SEG) has been exten-
siyely studied t3l. h this paper, we point out, for the first
time, the importance of the surface morpholory of the epi-
taxial Si layer (epi-Si) in elernated S/D ultrathin SOI CMOS
devices. We experimentally demonstrate a novel SEG tech-
nolory that provides extremely smooth epi-Si surface on
SOI and then discuss the impact of the epi-Si surface mor-
pholory on 9Gnm-node ultrathin SOI FETs. Finally, the
performance a,nd yield of the fabricated FETs are shown.
2. Experimental

Elenated S/D 38-nm-thick SOI (thin-SOI) N/PFETs
were fabricated. After the formation of full dielectric iso-
lation and channel implarrtation, a 2.(Fnm-thick gate oxide
wa.s gronrn. After the poly-Si gate electrode patterning, ex-
tension and pocket irnplantation were ca,rried out. Gate
sideurall spacers were then formed with SigNa/TEOS, and
epi-Si was selectively grown on the S/D regions by UIIV-
CVD with SizHo and Clz gases. After deep S/D regions
were formed, the gate and S/D were silicided by a con-
ventional Co salicide technolory. For comparison, elevated
S/D bulk and 10G.nm-thick SOI (thick-SoD FETs were
also fabricated.
3. Results and Discussion

Figure 1 schematically represents the degradation of the
epi-Si surface morpholory. Since the silicide layer inherits
the morpholory of the epi-Si, the silicide layer may come
into contact with the BOX layer within any pits that are
formed. A concern is that degradation of the epi-Si mor-
pholory will significa,ntly modulate ft"a in an uncontrolled
way because pits are formed ra,ndomly. Therefore, excellent
epiSi surface morpholory is more critical in elevated S/D
thin-SOI FETs than in bulk counterparts.

It has been reported that SiC islands formed on a Si sur-
face during the sidewall etch-back degrade the surface mor-
pholory of epi-Si [3]. In this study, we investigated change
of the epi-Si morphology by using no fluorocarbon gas in
the sidewall etching . Figure 2 shows the dependence of av-
erage surface roughness (Ra) on the arnount of overetching.
Clz-plasma sidewall etching led to significantly lower rough-
ness values and variation tha,n was observed with CIIF u/A"-
plasma etching, which means Clz-plasma etching provides a
wider process window. Figure 3 is a bird's-view SEM image
of a PFET formed by CHF3/Ar-plasma etching. Our SIMS
results in Tbble I show that the Cl2 plasma ofiered much

lower coverage of C at the epi-Si/sub-Si interface than the
CHF3/Ar plasma. Therefore, the Cl2-plasma etctring does
not form SiC islands, resulting in excellent epi-Si surface
morpholory.

Figure 4 is a bird's-view SEM image of the fabricated
thin-SOI NFET with epi-Si thickness (f/.pr) of 38nm. The
epi-Si was grown for 3.5min at 680'C after preheating for
3 min at 850"C. Excellent surface morpholory (0.22-nm
rrns) was apparent, as was reduced facet configuration. The
II"pi deviation was below *5% (Fig.5), and the smooth epi-
Si enabled a uniform CoSiz fitm in the elerated S/D regions
(Fig.6). F\rrthermore, Figure 7 shows the standard devia-
tion of .R a for the bulk, thick-SOl and thin-SOI NFETs.
The E"a deviation for thin-SOl devices $'as a"s low as that
of the bulk and thick-SOl devices because of the good sur-
face morpholory. These results imply that UHV-CVD SEG
combined with Cl2-plasma sidewall etch-back is suitable for
elevated S/D formation.

Figtrre 8 shows the short-channel characterislie of thin-
,9Ol N/PFETs. The short-channel effect was suppressed to
80run. Figure 9 shows the -[or, - I.,n characteristics of, thin-
,SOl N/PFETs at lVa; - t.zV. -Io,,, was 72O aad,29} p,A/p,m
at .[os : 10nA/pcm for NFETs and PFETs, respectively.
As shown in Fig.10, total junction capacitance of. thin-SOI
NFET was lower than that of the thick sO\ a,nd it was
much lonrer than that of the bulk. This is becarrse Gor scal-
ing reduced C;"o,g and the bulk had excessive S/D bottom
junction capacitance. Additionily, "f*u* of the thiwSOI
NFET at Lpo\ : L00 nm was 86 GHz. f-"* is very impor-
ta.nt for high frequency operation [ ]. Gate/Drain bridgine
is another importarrt concern in elevated S/D engineering
as illustrated in Fig.l. As shown in Fig.1l, the high selec-
tivity ensured that no gate/drain bridging was pronounced.
It should be also noted that any other leakage phenomena
were not observed.
4. Summary

We experimentally demonstrated a novel SEG technol-
ory which combines UIIV-CVD a,nd low-damage sidewall
etch-back with Clz-plasnra for elevated S/D ultrathin SOI
CMOS devices. We found that the ft,a deviation of el-
evated S/D sub-40-nm-thick SOI FETs can be as low as
that of bulk FETs because the excellent epi-Si surface mor-
pholory enabled a uniform CoSiz fiI"'. Moreover, neither
gate/drain bridging nor any other leakage phenomena were
pronounced. These results mean that this SEG technolory
is promising for elevated S/D ultrathin SOI CMOS devices
for 9G.nm technolory node and beyond.
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Problematic

Fig. 3. SEM inage of a PFET
formed by CIIF3/Ar etching.

Table L Coverage of impurities at epi-
Si/rub-Si interface. l0W/o means one
monolayer.

Sample

Cl, Etch 1.9/o 0.V/o 0.0o/o 0.3o/o

CHF3/Ar Etch I lE.3o/o 4.4o/o 4.5o/o 0.60/o

Fig. 6. TEM imago of an SOI PFET wittr
5 I -nnn-thick epitaxial Si.
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(a) Post Epitaxial Growttr (b) Post Co Silicidation
Fig. l. Schematic represcntation of S/D resistance modulation caused by degraded

surface morpholory: sfuctures after (a) epitxial growth and (b) Co silicidation.
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Fig. 2. Relationship between average

surface roughness and overetching degree

in sidewall etch-back.
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Fig. 4. SEM image of an SOI NFET
with 38-nm-thick epitarcial Si.
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Fig. 5. Cumulative probability of epita,xial

Si thickness on SOI PFETs for a mean

thickness of 38 and 5l nm.
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Fig. 8. Threshold voltage verzus gate

length for 38-nm-thick SOI N/PFETs.
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Fig. 7. Standard deviation of parasitic SID
resistance in elevated S/D NFETs with
bulh 38-nm+trick SOI, and l0Gnm-thick
SOI structures.
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Fig. 9. Ioo-Io6gharacteristics of 38-nm-
thick SOI N/PFETs at 1.2V.
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Fig. 10. NomnliZed junction capacitance

versus reverse voltage for 38-nm-thick
elevated S/DNFETS.
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Fig. 11. Subthreshold characteristics of
parallel NFETs consisting of 10,000 FETs
d L*t, = 0.1 Pm for all shots.
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