The Effect of Emitter Size Scaling on f_{max} in InP/InGaAs HBTs

Yoshifumi Ikenaga, Akira Fujihara and Shinichi Tanaka

Photonic and Wireless Devices Research Labs., NEC Corporation
9-1 Seiran 2-chome, Otsu, Shiga, 520-0833, Japan
Phone: +81 77 537 7688 FAX: +81 77 537 7689 E-mail: ikenaga@pwd.cl.nec.co.jp

1. Introduction

InP-based HBTs are promising candidates for such applications as high speed ICs for 40Gbps optical communication systems. While high f_r can be readily obtained in these HBTs because of superior electron transport of InP-related materials, f_{max} depends rather on processing technique as well as device size and is thus less predictable compared to f_r. For instance, while several reports have shown that f_{max} improves with decreasing emitter width [1], it has also been reported that f_r, which is one of the important factors determining f_{max}, deteriorates when emitter size is down scaled beyond certain limit [2]. Thus in order to achieve high f_{max}, it is crucial to understand the device scaling of f_{max} in correlation with the behavior of f_r.

In this paper, we investigate the emitter size dependence of f_{max} of single and double heterjunction HBTs (SHBTs and DHB Ts) with different f_r. With optimum device design, a state-of-the-art f_{max} of 313 GHz was obtained. Critical design consideration in improving the f_{max} of InP-based HBT will be discussed.

Table I Epitaxial layer structures of SHBTs and DHB Ts

<table>
<thead>
<tr>
<th>Layer</th>
<th>Material</th>
<th>Doping</th>
<th>Thickness(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emitter</td>
<td>n^+-InGaAs</td>
<td>Si:3e19</td>
<td>100 —</td>
</tr>
<tr>
<td></td>
<td>n^+-InP</td>
<td>Si:2e19</td>
<td>20 —</td>
</tr>
<tr>
<td></td>
<td>n-InP</td>
<td>Si:3e17</td>
<td>80 —</td>
</tr>
<tr>
<td>Base</td>
<td>p^+-InGaAs</td>
<td>C:3e19</td>
<td>50 —</td>
</tr>
<tr>
<td>Collector</td>
<td>n-InGaAs</td>
<td>Si:1e16</td>
<td>300 100</td>
</tr>
<tr>
<td></td>
<td>n-InP</td>
<td>Si:1e18</td>
<td>— 20</td>
</tr>
<tr>
<td></td>
<td>i-InP</td>
<td>Si:1e16</td>
<td>— 180</td>
</tr>
<tr>
<td>Sub-collector</td>
<td>n^+-InGaAs</td>
<td>Si:1e19</td>
<td>400 —</td>
</tr>
</tbody>
</table>

2. Device fabrication

The epitaxial layers of HBTs studied in this work were grown by MOCVD. Table 1 shows epitaxial layer structures of SHBT as well as DHB T with ballistic launcher structure in the collector region [3]. The former type of HBT has typical f_r of 160 GHz, whereas in the latter case f_r exceeds 200 GHz. To reduce base resistance, the base layer was heavily dopped to 4×10^{19} cm$^{-3}$. Prior to formation of base contact, the wafers were annealed at 500 C to remove hydrogen out from the carbon-doped base layers [4]. As shown in Fig.1, the HBTs were fabricated using self-aligned process. The emitter width, W_e, ranged from 0.2 μm to 2.6 μm, whereas the width of each base finger, $W_b/2$, was fix at 0.5 μm.

Fig. 1. Schematic cross section of fabricated HBT

3. Experimental Results

The RF performance of the HBTs was characterized by on-wafer measurement of S-parameters from 0.1 to 40 GHz. f_{max} was obtained by extrapolating Mason's unilateral gain (MUG) with -6 dB/Oct. slope as shown in Fig. 2.

Fig.2. Frequency dependence of $|H_{21}|$ and MUG

Fig.3 plots f_r and f_{max} of SHBTs and DHB Ts as a function of W_e. The emitter length was fix at 2.1 μm. As shown in Fig.3, both type of HBTs show similar W_e dependence of f_{max}. As long as W_e is greater than 1 μm, f_{max} is inversely proportional to square root of W_e. This W_e dependence of f_{max} indicates ideal scaling relationship for small scale HBTs. However, as W_e is decreased to below 1 μm, the variation of f_{max} with W_e deviates from ideal
scaling and turns to decreasing trend. Qualitatively, this behavior of f_{max} can be understood by degradation of f_r, also shown in Fig. 3.

Regarding maximum f_{max}, while the f_{max} of SHBT peaked at 265 GHz, in DHBT peak f_{max} of 313 GHz was obtained (Fig. 2). Note that the optimum W_E is far below the size at which f_r starts to drop. This indicates that in order to optimize device size for high f_{max} a specific design guideline taking all relevant parameters into account is needed.

4. Discussion

In order to gain insight into the factors responsible for the f_{max} behavior, f_r was plotted as a function of R_BC as shown in Fig. 4. The time constant $R_\text{BC}C_{\text{BC}}$ was estimated from f_r and f_{max} using the common relationship between f_r and f_{max}:

$$f_{\text{max}} = \sqrt{\frac{f_r}{8\pi R_\text{BC}C_{\text{BC}}}}. \quad (1)$$

This plot allows us to determine which of the two parameters, f_r or $R_\text{BC}C_{\text{BC}}$, is dominating the f_{max}. Figure 4 indicates that when W_E is greater than 1.0 μm f_{max} is mainly determined by $R_\text{BC}C_{\text{BC}}$. As a result, f_{max} increases with decreasing W_E. The maximum f_{max} can be obtained by drawing a line tangent to the plotted curve, then evaluating f_{max} from the line slope using the following relationship which is equivalent to eq. (2).

$$f_{\text{max}} = \frac{f_r}{(8\pi f_{\text{max}}^2)R_\text{BC}C_{\text{BC}}}. \quad (2)$$

Note that $R_\text{BC}C_{\text{BC}}$ continues to decrease even after f_{max} starts to decrease. Therefore, when W_E is excessively decreased, it is f_r rather than $R_\text{BC}C_{\text{BC}}$ that is limiting f_{max}.

To obtain more specific design guidelines for high f_{max} HBT, we performed a simple analysis. Taking the emitter size dependence of f_r and $R_\text{BC}C_{\text{BC}}$ into account, it can be shown that the optimum f_{max} as well as the emitter width that determines the optimum point are expressed as follows:

$$f_{\text{max}}^\text{opt} = \frac{1}{4\pi R_\text{BC}C_{\text{BC}}} \left(\frac{f_r + 2\rho_c^E C_0}{1 + \left(\frac{f_r}{\rho_c^E C_0} \right)^2} \right)^{1/2} \quad (3)$$

$$W_E^\text{opt} = W_F \left(\frac{\rho_c^E C_0}{f_r + \rho_c^E C_0} \right) \quad (4)$$

From (3) and (4), it can be clearly understood that the optimum f_{max} is determined by ratio $\frac{f_r}{\rho_c^E C_0}$. If the emitter contact is good ($f_r >> \rho_c^E C_0$), f_{max} is insensitive to f_r and the dominant factor that determines $f_{\text{max}}^\text{opt}$. In this case, significant increase in f_{max} can be expected by improving f_r and by further pushing the down scaling of W_E. On the other hand, with poor contact ($f_r \ll \rho_c^E C_0$), decreasing W_E below W_E proves to be useless and $f_{\text{max}}^\text{opt}$ is insensitive to f_r (and thus to f_E). The ratio $\frac{f_r}{\rho_c^E C_0}$ in our HBTs is about 3. Thus, for further improvement of f_{max}, improving not only f_r but also emitter contact is effective.

5. Conclusions

Emitter size scaling in InP-based HBTs for high f_{max} was investigated. Using simple analysis, we clarified the essential key factors in improving f_{max}. While an excellent f_{max} of 313 GHz was obtained with our HBT, the analysis suggests that further improvement is possible by improving the emitter contact.

Reference