E-1-3

The Effect of Emitter Size Scaling on fmax in InP/InGaAs HBTs

Yoshifumi Ikenaga, Akira Fujihara and Shinichi Tanaka

Photonic and Wireless Devices Research Labs., NEC Corporation 9-1 Seiran 2-chome, Otsu, Shiga, 520-0833, Japan Phone: +81 77 537 7688 FAX: +81 77 537 7689 E-mail: ikenaga@pwd.cl.nec.co.jp

1. Introduction

InP-based HBTs are promising candidates for such applications as high speed ICs for 40Gbps optical communication systems. While high f_T can be readily obtained in these HBTs because of superior electron transport of InP-related materials, f_{max} depends rather on processing technique as well as device size and is thus less predictable compared to f_T . For instance, while several reports have shown that f_{max} improves with decreasing emitter width [1], it has also been reported that f_T , which is one of the important factors determining f_{max} , deteriorates when emitter size is down scaled beyond certain limit [2]. Thus in order to achieve high f_{max} , it is crucial to understand the device scaling of f_{max} in correlation with the behavior f_T .

In this paper, we investigate the emitter size dependence of f_{max} of single and double heterojunction HBTs (SHBTs and DHBTs) with different f_T . With optimum device design, a state-of-the-art f_{max} of 313 GHz was obtained. Critical design consideration in improving the f_{max} of InP-based HBT will be discussed.

Layer	Material	Doping	Thickness(nm)	
			SHBT	DHBT
	n+-InGaAs	Si:3e19	100	←
Emitter	n+-InP	Si:2e19	20	~
	n-InP	Si:3e17	80	←
Base	p+-InGaAs	C:4e19	50	←
Collector	i-InGaAs	Si:1e16	300	100
	n+-InP	Si:1e18		20
	i-InP	Si:1e16		180
Sub-collector	n+-InGaAs	Si:1e19	400	←

Table I Epitaxial layer structures of SHBTs and DHBTs

2. Device fabrication

The epitaxial layers of HBTs studied in this work were grown by MOCVD. Table I shows epitaxial layer structures of SHBT as well as DHBT with ballistic launcher structure in the collector region [3]. The former type of HBT has typical f_T of 160 GHz, whereas in the latter case f_T exceeds 200 GHz. To reduce base resistance, the base layer was heavily doped to 4×10^{19} cm⁻³. Prior to formation of base contact, the wafers were annealed at 500 C to remove hydrogen out from the carbon-doped base layers [4]. As shown in Fig.1, the HBTs were fabricated using self-aligned process. The emitter width, W_E , ranged from 0.2 μ m to 2.6 μ m, whereas the width of each base finger, $W_B/2$, was fixed at 0.5 μ m.

Fig. 1. Schematic cross section of fabricated HBT

3. Experimental Results

The RF performance of the HBTs was characterized by on-wafer measurement of S-parameters from 0.1 to 40 GHz. f_{max} was obtained by extrapolating Mason's unilateral gain (MUG) with -6 dB/Oct. slope as shown in Fig. 2.

Fig.2. Frequency dependence of |H₂₁| and MUG

Fig.3 plots f_T and f_{max} of SHBTs and DHBTs as a function of W_E. The emitter length was fixed at 2.1 μ m. As shown in Fig.3, both type of HBTs show similar W_E dependence of f_{max} . As long as W_E is greater than 1 μ m, f_{max} is inversely proportional to square root of W_E. This W_E dependence of f_{max} indicates ideal scaling relationship for small scale HBTs. However, as W_E is decreased to below 1 μ m, the variation of f_{max} with W_E deviates from ideal scaling and turns to decreasing trend. Qualitatively, this behavior of f_{max} can be understood by degradation of f_T , also shown in Fig.3.

Fig.3. Emitter width dependence of fmax

Regarding maximum f_{max} , while the f_{max} of SHBT peaked at 265 GHz, in DHBT peak f_{max} of 313 GHz was obtained(Fig. 2). Note that the optimum W_E is far below the size at which f_T starts to drop. This indicates that in order to optimize device size for high f_{max} a specific design guideline taking all relevant parameters into account is needed.

4. Discussion

In order to gain insight into the factors responsible for the f_{max} behavior, f_T was plotted as a function of R_BC_{BC} as shown in Fig.4. The time constant R_BC_{BC} was estimated from f_T and f_{max} using the common relationship between f_T and f_{max} :

$$f_{\rm max} = \sqrt{\frac{f_T}{8\pi R_{\rm B} C_{\rm BC}}} \,. \tag{1}$$

This plot allows us to determine which of the two parameters, f_T or R_BC_{BC} , is dominating the f_{max} . Figure 4 indicates that when W_E is greater than 1.0 µm f_{max} is mainly determined by R_BC_{BC} . As a result, f_{max} increases with decreasing W_E . The maximum f_{max} can be obtained by drawing a line tangent to the plotted curve, then evaluating f_{max} from the line slope using the following relationship which is equivalent to eq. (2).

$$f_T = (8\pi f_{\text{max}}^2) R_B C_{BC} \tag{2}$$

Note that R_BC_{BC} continues to decrease even after f_{max} starts to decrease. Therefore, when W_E is excessively decreased, it is f_T rather than R_BC_{BC} that is limiting f_{max} .

To obtain more specific design guidelines for high f_{max} HBT, we performed a simple analysis. Taking the emitter size dependence of f_T and R_BC_{BC} into account, it can be shown that the optimum f_{max} as well as the emitter width that determines the

optimum point are expressed as follows:

$$f_{\max}^{opt} \cong \frac{1}{4\pi \sqrt{R_B^{ext} C_{BC}^{ext}}} \left(\tau_F + 2\rho_c^E c_0 \left(1 + \sqrt{1 + \frac{\tau_F}{\rho_c^E c_0}} \right) \right)^{-\gamma_2}$$
(3)
$$W_E^{opt} \cong W_B \sqrt{\frac{\rho_c^E c_0}{\tau_F + \rho_c^E c_0}}$$
(4)

RBext	External base resistance
CBCext	: External collector capacitance
TF	: Total carrier transit time delay
pc	: Specific contact resistivity of emitter contact
Co	: Collector capacitance per unit area

From (3) and (4), it can be clearly understood that the optimum f_{max} is determined by ratio $\tau_F/\rho_c^E c_0$. If the emitter contact is good ($\tau_F >> \rho_c^E c_0$), τ_F is the dominant factor that determines f_{max}^{opt} . In this case, significant increase in f_{max} can be expected by improving f_T and by further pushing the down scaling of W_E. On the other hand, with poor contact ($\tau_F << \rho_c^E c_0$), decreasing W_E below W_B proves to be useless and f_{max}^{opt} is insensitive to τ_F (and thus to f_T). The ratio $\tau_F/\rho_c^E c_0$ in our HBTs is about 3. Thus, for further improvement of f_{max} , improving not only τ_F but also emitter contact is effective.

5. Conclusions

Emitter size scaling in InP-based HBTs for high f_{max} was investigated. Using simple analysis, we clarified the essential key factors in improving f_{max} . While an excellent f_{max} of 313 GHz was obtained with our HBT, the analysis suggests that further improvement is possible by improving the emitter contact.

Reference

[1]H.Nakajima, K.Kurishima, S.Yamahata, T.Kobayashi and Y.Matsuoka, *IEICE Trans. Electron.*, 186(1995)
[2]Y.Amamiya, T.Niwa, N.Nagano, M.Mamada, Y.Suzuki and H.Shimawaki, *GaAs IC Symposium*, Technical Digest, 121(1998)
[3]A.Fujihara, Y.Ikenaga, H.Takahashi, M.Kawanaka and S.Tanaka, *IEDM2001* Technical Digest, 772(2001)
[4]N.Watanabe, S.Kumar A.K., S.Yamahata and T.Kobayashi, *J.Crystal Growth*, 195(1998)48