E-3.4
Influence of SiGe Channel Position and Fowler-Nordheim Stress on 1/f Noise in SiGe pMOSFETs

Young-Joo Song, Sang-Hoon Kim, Jeong-Hoon Kim¹, Jong-In Song¹, and Kyu-Hwan Shim
SiGe Device Team, Wireless Communication Device Research Division
Electronics and Telecommunications Research Institute, Yuseong-gu, Daejeon, 305-350 South Korea
Phone: +82-42-860-1790 Fax: +82-42-860-6183 E-mail: yjs10@etri.re.kr
¹Dept. of Information and Communications, KJIST, Buk-gu, Kwangju 500-712, South Korea

1. Introduction

Beyond the carrier mobility enhancement, the SiGe pMOSFET is expected to have an advantage in 1/f noise [1]. This is conventionally explained by the reduction in either mobility fluctuation (Δμ) or carrier number fluctuation (Δn) in the buried channel device [2,3]. The reduction in Δμ is anticipated since the carriers are simply farther away from the scattering sources such as fixed oxide charge and interface roughness [1]. The Δn resulting from the capture/release of carriers involving oxide traps (slow states) near the gate-oxide interface is also considered to be weak in SiGe pMOSFETs since the tunneling probability of carriers from the buried channel to near-interface oxide traps decreases fast as the oxide-to-channel distance (d_{ox-ch}) typically 2-8nm) increases [1]. Furthermore, it has been proposed that the carriers in SiGe pMOSFETs tunnel into a lower density of trap states, responsible for the larger displacement of the hole quasi-Fermi level (E_Fp) from the valence band edge at the oxide interface (E_o) for the same gate overdrive [4,5]. Nevertheless, it has been reported that the 1/f noise in SiGe pMOSFETs is dominated by Δμ rather than Δn [1,3], suggesting that the oxide trap distribution plays a dominant role in the 1/f noise generation.

Since the Fowler-Nordheim (F-N) stress is conventionally employed to find the relationship between the gate-oxide quality and the 1/f noise in MOSFETs (because it increases the oxide trap density (N_{ot}) significantly) [6,7], it is necessary to examine the 1/f noise in SiGe pMOSFETs under the F-N stress in order to investigate the influence of the channel position and N_{ot} on the 1/f noise behavior in the buried channel device.

2. Device Fabrication and Measurements

The epitaxy by reduced pressure CVD started with a 100Å Si seed, and the growth of a 200Å thick Si_{0.6}Ge_{0.4} channel followed it. Then, a Si-cap layer with three different thicknesses of 60Å (sample I), 80Å (sample II), and 100Å (sample III) was deposited on each wafer. The gate-oxide thickness is 72±2Å for all samples. After the oxidation, the unconsumed Si-cap layer thicknesses of the samples I-III were measured to be 21Å, 47Å, and 64Å in average, respectively. Fig. 1 shows the schematic cross-sectional view of the SiGe pMOSFET. The measured DC parameters of the samples are shown in Table. I.

The F-N stressing was performed by applying a constant gate voltage (V_g) of -8V with drain (V_d) and source voltages of 0V for 120 seconds. The V_m shift due to the stress is -0.29±0.02V for all samples. The 1/f noise was measured before and after the F-N stress. The normalized drain current spectral density (S_i/I_d) was derived from the fluctuation in V_d at the bias condition of V_d=100±5mV and V_m=V_d=0.7V.

3. Results and Discussion

Fig. 2 (a) and (b) show S_i/I_d² vs. frequency of the Si and SiGe pMOSFETs at the given bias condition for before and after the F-N stress, respectively. It is clearly seen that all SiGe pMOSFETs here have significantly lower 1/f noise levels than the Si-control pMOSFET, by an order of 1-2, regardless of F-N stressing, although the noise level elevates after the stress for all samples. This agrees with the presumed fact that the buried channel device is less noisy than the surface channel device as long as the gate-oxide quality is comparable [2], and this is proven to be still valid even after the gate-oxide is degraded by the F-N stress. Meanwhile, it is noted that the noise of SiGe pMOSFETs reveals a dependence on d_{ox-ch}, but the relatively narrow

Table. I DC parameters of the SiGe and Si pMOSFETs (unstressed) in this work. I_on, I_off and G_{n-max} are measured at V_d=V_g=-3V, V_d=V_g=-3V and V_m=0V, and V_m=0.1V, respectively.

<table>
<thead>
<tr>
<th>ID</th>
<th>I_on [A/μm]</th>
<th>I_off [A/μm]</th>
<th>G_{n-max} [μS/μm]</th>
<th>V_m [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.42x10⁻⁴</td>
<td>1.39x10⁻¹⁰</td>
<td>10.64</td>
<td>-0.95</td>
</tr>
<tr>
<td>II</td>
<td>1.33x10⁻⁴</td>
<td>5.99x10⁻¹²</td>
<td>9.85</td>
<td>-0.97</td>
</tr>
<tr>
<td>III</td>
<td>1.09x10⁻⁴</td>
<td>1.07x10⁻¹²</td>
<td>9.06</td>
<td>-1.03</td>
</tr>
<tr>
<td>Si</td>
<td>1.05x10⁻⁴</td>
<td>3.15x10⁻¹²</td>
<td>8.87</td>
<td>-1.07</td>
</tr>
</tbody>
</table>

Fig. 1 Schematic cross-sectional view of the SiGe pMOSFET.

The \(\Delta S_I^*/S_I^* \) change in 1/f noise at 30Hz due to the F-N stress is included in Fig. 3. As seen, the SiGe pMOSFETs with a \(d_{ox-ch} \) of less than 5nm (samples I and II) show a smaller \% change in \(\Delta S_I^*/S_I^* \) of 34-36\% than the SiGe pMOSFET with a \(d_{ox-ch} \) of 64nm (sample III, 70\%) and the Si-control (91\%). It is suggested that the lower \(\Delta S_I^*/S_I^* \) for the samples I and II is attributed to the smaller \% change in \(N_{ot} \) (\(\Delta N_{ot}/N_{ot} \)) near the \(E_F \) when the separation between \(E_F \) and \(E_{VS} \) is larger.

\(N_{ot} \) at the Fermi level can be extracted from the conventional \(\Delta \) model equation [3], and the calculated values of the Si-control pMOSFET are 5.2x10^{10} \text{cm}^{-2} \text{eV}^{-1} and 1.2x10^{16} \text{cm}^{-2} \text{eV}^{-1} (i.e. \(\Delta N_{ot}/N_{ot} = 131\% \)) for before and after the F-N stress, respectively. Since the equation is only valid for the standard surface channel MOSFET, it is difficult to apply the equation directly to the SiGe buried channel pMOSFETs [3]. However, it has been proposed that the equation is effectively used for the SiGe pMOSFET assuming that the parallel channel formation is negligible (in this case, \(C_{ox} \) should be replaced by the gate-to-channel capacitance) [5].

Using the assumption, it is found that the \(N_{ot} \) at \(E_F \) varies from 7.9x10^{10} \text{cm}^{-2} \text{eV}^{-1} to 1.4x10^{16} \text{cm}^{-2} \text{eV}^{-1} (\Delta N_{ot}/N_{ot}=77\%) due to the F-N stress for the sample I, and from 7.1x10^{10} \text{cm}^{-2} \text{eV}^{-1} to 1.2x10^{16} \text{cm}^{-2} \text{eV}^{-1} (\Delta N_{ot}/N_{ot}=69\%) for the sample II. This suggests that both \(N_{ot} \) distribution and \(\Delta N_{ot}/N_{ot} \) due to the F-N stress are non-uniform with respect to the energy level.

4. Conclusion

In conclusion, the SiGe pMOSFET shows a much lower 1/f noise than the standard Si pMOSFET even after the F-N stress. It is found that the position of a channel relative to the gate-oxide interface is a key parameter in determining the device's 1/f noise behavior if the gate-oxide condition is comparable. The minimum 1/f noise occurs when the \(d_{ox-ch} \) is 2-5nm, responsible for the minimum parallel channel effect and the lower \(N_{ot} \) near the \(E_F \) resulting from the larger separation of \(E_F \) from \(E_{VS} \). The smaller \% change in 1/f noise against the F-N stress is also observed for the device with a \(d_{ox-ch} \) of 2-5nm, suggesting the non-uniform \% change in \(N_{ot} \) distribution versus energy level under the F-N stress. This SiGe pMOSFET design is potentially suitable for the applications requiring a low 1/f noise with high stability.

References