(0.5 x n)(2e²/h) conductance steps observed in side-gated constriction made at In₀.₇₅Ga₀.₂₅As/In₀.₇₅Al₀.₂₅As heterojunction under zero-field

Syoji Yamada*, Tomohiro Kita, Masakazu Yoshitake, Hidetaka Sato, Yuuki Sato
Center for Nano Materials and Technology, JAIST
I-1, Asahidai, Tatsunokuchi, Ishikawa 23-1292 Japan
*corresponding author: syoji@jaist.ac.jp

Very recently, a group of compound semiconductor heterojunctions composed of narrow-gap materials has attracted much attention, since they often revealed high electron mobilities (<10⁶ cm²/Vsec) as well as a finite zero-field spin-splitting (Δ< 10 meV) although still at low temperatures. Those heterojunctions are interesting not only from the viewpoint of possible application toward semiconductor spintronic devices but also from that of opening a new physics area, so-called "mesoscopic spintronics". At present, however, the material system which reveals both the features at the same time is limited to InGaAs based ones such as In₀.₃Ga₀.₇As/In₀.₃Al₀.₇As [1], In₀.₇Ga₀.₃As/InP [2], and In₀.₇Ga₀.₃As/In₀.₃Al₀.₇As [3]. It is well known that the strong spin-orbit interaction in narrow-gap heterojunctions often appears as a major scattering mechanism at very low temperatures. So far, anti-localization [4-6] has been discussed as a quantum effect originated from the scattering mechanism. In addition, the temperature dependence of the conductance fluctuations [7] has been discussed in quantum wires fabricated at low mobility In₀.₅Ga₀.₅As/In₀.₅Al₀.₅As two-dimensional electron gas (2DEG).

In this paper, we first report the conductance steps with 0.5(2e²/h) spacing observed in the quantum point-contact (QPC) made at high mobility In₀.₇Ga₀.₃As / In₀.₇Al₀.₃As heterojunctions [8], which has a zero-field spin-splitting of almost 10 meV. Since it is difficult to operate the split-gate structure in this heterojunction due to its narrow-gap nature, we have made a point-contact by a mesa-etched wire and finger side-gates, the top edges of them are located closely to the side of the wires. Typical wire width is 1-2 μm and the length is ranging from 30 to 250 μm. The air-gap between the wire and gates is about 0.5-1 μm. Figure 1 shows a schematic view of the sample structure. Conductance measurements were carried out by ac lock-in technique at 1.5 K. Figure 2 is an example of measured two-terminal conductance of the QPC. As is seen clearly, 0.5, (0.5x2), and (0.5x3) (2e²/h) steps were found to appear even under zero-magnetic field for almost all samples. In addition, ~0.2 (2e²/h) step was often observed.

As is formerly reported [9], application of strong parallel magnetic field to the clean QPC will evolve (0.5 x n)(2e²/h) (n: integer) conductance steps. This means that the
conductance steps of \(n(2e^2/h) \) at zero-field will spin split under the strong magnetic field due to Zeeman splitting. The clean QPC is usually fabricated at GaAs/AlGaAs heterojunction which has sometimes a very high electron mobility. But that material system reveals almost no zero-field spin-splitting due to the weak spin-orbit interaction. Our material system, however, has a high electron mobility as well as a very large zero-field spin-splitting, which also could yield spin-splittings of the \(n(2e^2/h) \) conductance steps. Observed \((0.5 \times n)(2e^2/h) \) steps thus could be attributed to the zero-field spin-splitting itself. The origin of the \(~0.2 \) step is not clear at present. In the presentation, the detailed experimental results including the magnetic field dependencies will be reported.

References

Fig. 1 Sample structure of finger-gate point contact. Wire width and gap between the wire and the gates are 2 and 1 \(\mu \)m, respectively.

Fig. 2 Results of conductance measurements. Background resistance is different between samples, A and B.