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1. Introduction

InP-based Ino.s2Alo.4sAs/InyGaixAs high electron mobility
transistors (HEMT's) are the most promising devices fr sub-
millimeter-wave (300-GHz to 3-THz) applications. In our
previous works [1-6], we fabricated decananometer-gate
lattice-matched (x=0.53) and pseudomorphic (x=0.7)
HEMTs. The minimum gate length L, is 25 nm [3,4], and
the record cutoff frequency fr is 472 GHz [6]. Moreover, we
confirmed that increasing the In content in the InGaAs
channel layer [5] and reducing the gate-channel distance [6]
can effectively increase fr, and we pointed out that the channel
aspect ratio defined as o0 = L,/ (d + d.), where d is the gate-
channel distance and d. is the channel layer thickness, must
be increased to more than 1 to suppress a marked short-
channel effect for sub-50-nm-gate HEMTs [4]. In this work,
we fabricated decananometer-gate InAlAs/InGaAs HEMTs by
using the concepts and techniques developed in our previous
works [1-6]. We reduced the gate-channel distance to keep
the channel aspect ratio greater than 1.

2. Device Fabrication

Lattice-matched and pseudomorphic HEMT epitaxial
layers were grown on semi-insulating (100) InP substrates by
metalorganic chemical vapor deposition. In the lattice-
matched HEMTS, the layers, from bottom to top, consist of a
300-nm InAlAs buffr, a 15-nm InGaAs charmel, a 3-nm
InAlAs spacer, a Si-8-doped sheet (5 x 10" em?), a 10-nm
InAlAs bamer a 6-nm InP, and a 30-nm Si-doped InGaAs
cap (1 x 10” em™) layer. In the pseudomorphic HEMTs,
the Ing;GaypsAs channel layer is 12 nm thick, the
In 53Gao.47As cap layer is 40 nm thick, and the other layers are
the same as those in the lattice-matched HEMTs.

The fabrication process was similar to that used in our
previous works [3,4]. Source and drain ohmic contacts with
a spacing Ly of 2 um were formed by using non-alloyed
Ti/Pt/Au. T-shaped Ti/Pt/Au Schottky gates with widths
Wy of 50 x 2 um were fabricated by using electron beam
lithography and a standard lifi-off technique. A two-step-
recessed gate [7] was used to reduce the gate-channel distance
to 4 nm, while keeping a higher electron-sheet density in the
side-etched region of the gate recess.

3. Results and Discussion

S-parameters were measured at frequencies up to 50 GHz
in 0.25-GHz steps. Note that the parasitic capacitance due
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to the probing pads was carefully measured and subtracted
from the measured S-parameters by using the same method as
in our previous work [3]. Figure 1 shows the frequency
dependence of the current gain |/2|* of a 25-nm-gate lattice-
matched HEMT under a drain-source voltage Vy of 0.8 V and
a gate-source voltage Vg of 0.35 V. We obtained an fr of
500 GHz by the extrapolation of |4y |” using a least-squares fit.
This f7 is superior to the value obtained for our HEMT that
has a thicker barrier layer [3,4]. Figure 2 shows the
frequency dependence of the current gain |hy|* of a 25-nm-gate
pseudomorphic HEMT under a Vg of 0.8 Vanda Vy of
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Fig. 1 Frequency dependence of the current gain [h2]* for a 25-
nm-gate lattice-matched HEMT.
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Fig. 2 Frequency dependence of the current gain |/|* for a 25-
nm-gate pseudomorphic HEMT.



0.35 V. We obtained an ultrahigh f; of 562 GHz, which is
the highest value ever reported for any transistor.

Figure 3 shows the L, dependence of /7 in our present and
previous works [1-6]. The values adjacent to the symbols
indicate the channel aspect ratios determined by using cross-
sectional transmission electron microscope images. The
dotted line is the calculated one using the equation

=21 (Tex + Lg / V)], ()

where 7., is the extrinsic delay time (= 0.25 ps), and v; is the
saturation velocity (= 2.6 x 10" cm/s). The values of fr in

our earlier works for lattice-matched HEMTs [1-4] are close to
the values shown by the dotted line. By increasing the

channel aspect ratio fiom 0.83 to 1.3, the f; was increased

fiom 396 to 500 GHz for the 25-nm-gate HEMTs. As can

be clearly seen from Fig. 3, a larger channel aspect ratio, i.e.,

a shorter gate-channel distance at the same gate length,

generally provides a higher fr. The dashed lines are the

"iso-ratio" lines with oo =~ 1.1 and 1.6. Thus, reducing the
gate-channel distance increases /7.
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Fig.3  Gate length L;dependence of the cutoff frequency frin
our present and previous works [1-6].
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Fig. 4 Electron-velocity profiles in the InGaAs channel of 50-

nm-gate lattice-matched HEMTs with d=11 andd =17 nm
calculated by using MC simulations.
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To clarify the essential origin of the ultrahigh fr of our
HEMTs, we performed Monte Carlo (MC) simulations for
the lattice-matched InAlAs/InGaAs HEMTs by using a
three-valley model with nonparabolicity. Figure 4 compares
two electron-velocity profiles in the InGaAs channel of 50-
nm-gate HEMTs with gate-channel distances d of 11 and 17
nm under a Vg of 0.8 V and a Vi of -0.4 V. Under the gate,
the electrons are accelerated more quickly at 4 = 11 nm than
atd= 17 nm. The average electron velocities under the gate
are 4.0 x 10" and 3.6 x 10’ ecm/s ord= 11 and d = 17 nm,
respectively. A higher electron velocity at d= 11 nm is a
result of a steeper potential under the gate. Thus, reducing
the gate-channel distance enhances the electron velocity,
which is consistent with our previous result [6].

4, Summary

In summary, we succeeded in fabricating 25-nm-gate
pseudomorphic InAlAs/InGaAs HEMTs with an ultrahigh f7
of 562 GHz by reducing the gate-channel distance. This fr
is the highest value ever reported for any transistor. We also
fabricated lattice-matched HEMTs and obtained an f; of 500
GHz for a 25-nm-gate HEMT, which is superior to the value
obtained for a HEMT with a thicker barmrier layer. Using
MC simulations, we clarified that the ultrahigh fr of our
HEMTs is a result of an enhanced electron velocity under the
gate, which in tumn is a result of reducing the gate-channel
distance.
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