Enhancement of dielectric constant due to expansion of lattice spacing in CeO₂ directly grown on Si (111)

Daisuke Matsushita, Yukie Nishikawa, Nobutaka Satou^{*}, Masahiko Yoshiki^{*}, Tatsuo Schimizu, Takeshi Yamaguchi, Hideki Satake and Noburu Fukushima

Advanced LSI Technology Laboratory, Toshiba Corporation and ^{*}Toshiba Nanoanalysis Corporation 1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan Phone:+81-44-549-2192, Fax:+81-44-520-1257, d-matsushita@amc.toshiba.co.jp

1. Introduction

Crystalline oxide is a candidate for gate dielectrics, which can realize equivalent oxide thickness (EOT) less than 0.5 nm. We achieved direct growth of CeO_2 on Si (111) and EOT as thin as 0.38 nm [1]. The dielectric constant (ε) of the CeO_2 was 52, which is twice as large as the reported value of bulk (polycrystalline) CeO₂ (ϵ ~26). The value of ϵ in ionic oxide is strongly related with crystal structures and/or lattice spacings. Enhancement of $\boldsymbol{\epsilon}$ by changing the crystal structure of Ta₂O₃ was reported [2], but the crystalline symmetry is unchanged in the CeO₂ case. Anisotropy in ε may not be existent in fluorite structures such as CeO₂. The relationship between the lattice spacings and ε theoretically studied in SrTiO₃ [3] and we supposed that the changes in lattice spacing in CeO₂ may be a considerable reason. In this study, we preciously evaluated the lattice spacings of CeO₂ directly grown on Si (epitaxial CeO₂) and discussed the ε enhancement characteristics.

2. Sample preparation

CeO₂ was grown on p-Si (111) substrate by molecular beam epitaxy (MBE) using metal Ce and O₃ as source materials at 700 °C. The thickness of CeO₂ was 10 nm. Fig.1 (a) is a cross-sectional TEM image of the CeO₂/Si (111) interface and (b) is a plane view TEM image of CeO₂. CeO₂ is confirmed to be single crystalline and directly grown on Si without any interfacial layer.

3. Results and discussions

To evaluate lattice spacings in ultra thin films, we performed in-plane XRD measurements [4], whose schematic diagrams are shown in Figs. 2. Reciprocal space maps around (220) planes for (a) Si substrate and (b) CeO₂/Si were measured to separate Si and CeO₂ peaks as shown in Figs. 3. Ellipses in Figs. 3 indicate FWHM of diffraction peaks for Si and CeO₂, which are determined by the peak separation method using gaussian curves. In Fig. 3 (b), a broad diffraction pattern of CeO₂ with a sharp Si diffraction pattern was observed. It can be seen that the 2 θ angle of CeO₂ (110) (d_{CeO2(110)}) is larger than that of Si (110) (d_{Si(110)}). The relative change in d_{CeO2(110)} from Si ($\Delta d_{CeO2(110)}$) is calculated to be +0.26 %.

Electron diffraction patterns (EDP) were observed by TEM [5] to examine the lattice spacing parallel to the sample surface ($d_{CeO2(111)}$), in addition to $d_{CeO2(110)}$, as shown in Fig. 4. We can obtain $\Delta d_{CeO2(110)}$ and $\Delta d_{CeO2(111)}$ by comparing the spot positions of CeO₂ with those of Si. Table I summarizes $\Delta d_{CeO2(110)}$ and $\Delta d_{CeO2(111)}$ by in-plane XRD and EDP. The value of $d_{CeO2(111)}$ is also larger than $d_{Si(111)}$ ($\Delta d_{CeO2(111)} = +0.3 \%$). $\Delta d_{CeO2(110)}$ by EDP is evaluated to be +0.3 %, which agrees with the in-plane XRD result. The lattice constant of

bulk CeO₂ is reported to be 0.541 nm which is smaller than that of Si (0.543 nm) by -0.35 %. It is found that the lattice spacings in epitaxial CeO₂ are isotopically expanded by 0.6%, compared with those in bulk CeO₂.

We focused on the lack of oxygen in CeO₂ as a reason for the expansion of the lattice spacings. Because it is reported that Ce oxides have two crystal structures as CeO₂ and Ce₂O₃ and that the lattice constant of Ce₂O₃ is larger than that of CeO₂ by 3 % [6]. As the number of oxygen atoms in a unit cell of Ce₂O₃ is smaller than that of CeO₂, the coulomb interaction in Ce₂O₃ would be lowered compared with that in CeO₂, resulting in expansion of the lattice constant in Ce₂O₃. In order to confirm the lack of oxygen in epitaxial CeO₂, we performed X-ray photoelectron spectroscopy (XPS) measurements. Additional in-gap state is observed in the valence band edge spectrum as shown in Fig. 5, which is determined to be due to the oxygen-defect-induced state [7]. This result indicates that the expansion of lattice spacings in epitaxial CeO₂ is due to the lack of oxygen atoms.

We consider that the enhancement of ε is due to the expansion of the lattice spacings in epitaxial CeO₂ as described above. This tendency is similar to the result of SrTiO₃[3] as shown in Fig. 6. However, the enhancement of ε in CeO₂ is smaller than that of SrTiO₃. It may indicate that the ε enhancement mechanism in CeO₂ is different from that in SrTiO₃; for example, the contribution of ionic polarizations on ε , or the changes of electron states around Ce atoms due to oxygen defects.

4. Conclusions

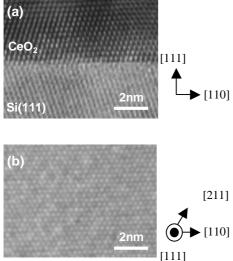
We found that the lattice spacings in CeO_2 directly grown on Si are expanded compared with those in bulk CeO_2 due to the oxygen defects and that causes ε enhancement in epitaxial CeO_2 . This result indicates that we can control the dielectric constant with the quantity of oxygen atoms in ionic crystalline oxides.

References

[1] Y. Nishikawa, N. Fukushima, N. Yasuda, K. Nakayama and S. Ikegawa, Jpn. J. Appl. Phys. 41, (2002) 2480.

[2] M. Hiratani, T. Hamada, S. Iijima, Y. Ohji, I. Asano, N. Nakanishi and S. Kimura, *Dig. Tech. Papers Symp. VLSI Tech., Kyoto*, 2001, p41.

[3] T. Schimizu and T. Kawakubo, Jpn. J. Appl. Phys. 37, (1998) L235.

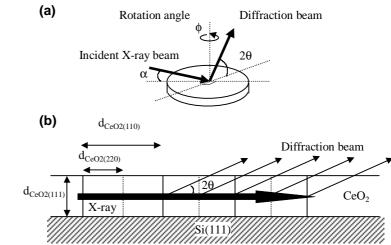
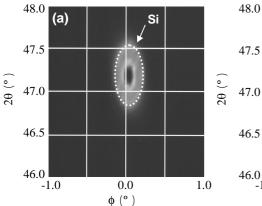

[4] H. Tomita, S. Komiya, Y. Horii and T. Nakamura, Jpn. J. Appl. Phys. 34, (1997) L876.

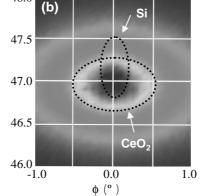
[5] M. Koguchi, K. Nakamura and K. Umemura, *Ext. Abst. SSDM 2001, Tokyo*, (2001) p198.

[6] N. V. Skorodumova, R. Ahuja, S. I. Simak, I. A. Abrikosov, B.

Johansson and B. I. Lundqvist, Phys. Rev. B 64, (2001) 115108.

[7] A. Pfau and K. D. Schierbaum, Surf. Sci. 321, (1994) 71.


Fig. 2 Schematic diagrams of in-plne X-ray diffraction (XRD) measurements.

(a) Geometry for incident and diffraction beams. X-ray is irradiated under critical angle of CeO_2 . (b)Direction of X-ray propagation in $CeO_2/Si(111)$.

Lattice spacings perpendicular to sample surface can be obtained.

Fig. 1 (a)Cross-sectional view and (b)plane view TEM images of $CeO_2/Si(111)$.

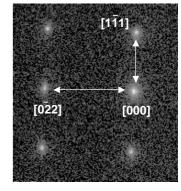


Fig. 4 Electron diffraction pattern (EPD) of CeO₂. Spot positions of CeO₂ [$\overline{022}$] and [$\overline{11}$] from [$\overline{000}$] were compared with those of Si.

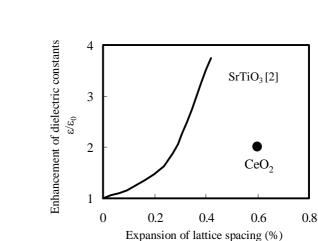


Fig. 6 Relationship between expansion of CeO_2 (111) lattice spacing and enhancement of dielectric constant for CeO_2 compared with SrTiO₃[2].

Fig.3 Reciprocal space maps around Si(220) and CeO₂(220) measured by in-plane XRD for (a) Si and (b) CeO₂/Si. Ellipses indicate FWHM of diffraction peaks for Si and CeO₂. Incident X-ray angle (α) was 0.2°.

Table I Relative changes in CeO₂ (110) and (111) lattice spacings from Si ($\Delta d_{CeO2(110)}$ and $\Delta d_{CeO2(111)}$).

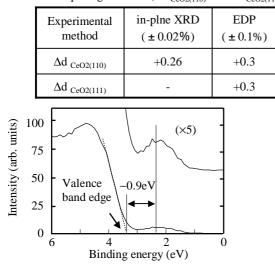


Fig. 5 XPS spectrum of CeO_2 valence band edge. In-gap state (~0.9 eV from the valence band edge) attributed to oxygen defects was observed.