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1. Introduction 

Filling low-resistivity metal into large-aspect-ratio con-
tact/via holes is important technology in the fabrication of 
Si ULSI. This paper reports the filling capability of Al us-
ing CVD-Al/Flow-Al technology, which has superior fill-
ing capabilities. The importance of Al filling technology is 
(1) the possibility of eliminating the W-plug process that 
usually requires CMP or etch-back processes, resulting in 
low-contact-resistivity low-cost technology, and (2) com-
patibility with well-established contact/via processes. The 
filling technology is applied to system LSI and DRAM 
contacts. 

This paper reports the filling capability of 
CVD-Al/Flow-Al technology and Fourier-Transform In-
frared-Spectroscopy (FT-IR) measurement and discusses 
the deposition mechanism of methylpyrrolidine alane 
(MPA). 
 
2. Al Precursor for CVD 

Figure 1 shows the molecular structure of methylpyr-
rolidine alane (MPA), which is used in this study. MPA is a 
colorless liquid at room temperature, and exhibits selectiv-
ity, low flammability and chemical stability, which is be-
lieved to be due to the larger binding strength of Al-N as 
compared to DMEAA [1][2]. 

 
3. Al CVD Using MPA 

Commercially available cluster apparatus is used for 
CVD-Al/Flow-Al. The available wafer size is 8-inch. MPA 
is delivered by the conventional bubbling method using Ar 
carrier gas. Figure 2 shows a deposition rate of CVD-Al as 
a function of temperature. The activation energy was found 
to be 0.20-0.23eV. Figure 3 shows the surface morphology 
of as-deposited CVD-Al. As deposition temperature in-
creases, surface morphology becomes slightly rough. The 
carbon incorporation is less than 0.1% from the Auger 
depth profile measurement. As a seed layer for the subse-
quent Flow-Al process, continuous and thin Al is required 
[3]. At the present time, CVD-Al deposition at 105°C is 
used for filling. 
 
4. Contact Hole Filling 

The contact hole filling sequence is as follows. 
TiN(60nm)/Ti(40nm) layer is deposited by long-throw 

sputtering (LTS). The wafer is carried through an air envi-
ronment to LTS-Al/Flow-Al or CVD-Al/Flow-Al appara-
tuses. The seed Al layer is deposited by LTS or CVD. Then, 
without exposing wafers to atmosphere, Flow-Al is depos-
ited; thick Al is deposited by sputtering method at a rela-
tively high temperature of 400°C. During the sputtering 
duration at high temperature, Al is flowed to fill contact 
holes. The sequence is a so-called 2-step filling process. 
LTS-Al is deposited at room temperature and CVD-Al is 
deposited at 105°C/30 Pa. 

As shown in Fig. 4(a), 0.25 µmφ contact holes with an 
aspect ratio of 4 cannot be filled by the LTS-Al/Flow-Al 
process. In the 2-step process, step coverage of the seed 
layer is a key issue. If the sidewalls and bottoms of contact 
holes are not covered by the seed layer, contact holes can-
not be filled by the subsequent Flow-Al process. Because 
of the inferior step coverage of LTS-Al, contact holes are 
not filled by subsequent Flow-Al deposition. As shown in 
Fig. 4(b), however, the contact holes are filled by the 
CVD-Al/Flow-Al process. Figure 5(a) shows the filling of 
contact holes of 0.13µmφ with an aspect ratio of 8. How-
ever, although the diameter of this hole is reduced at the 
middle of the hole, the hole is successfully filled by 
CVD-Al/Flow-Al. Figure 5(b) shows the mirror-like Al 
surface on TiN/Ti. The relative reflectivity of the Si surface 
is sufficiently high, being 208% at 480 nm. 
 
5. FT-IR Analysis of Al-CVD Using MPA 

The gas phase decomposition of MPA is known as 
shown in Fig. 6 [2]. Surface reaction of MPA on 
TiN/Ti/SiO2/Si surface was investigated by Fou-
rier-Transform Infrared-Spectroscopy (FT-IR) measure-
ment. Figure 7 shows a schematic of the measurement sys-
tem. MPA is directly injected into the chamber. No inert 
gas is used in this experiment. Figure 8 shows FT-IR spec-
trum at 50ºC and a chamber pressure was 0.8 Pa. Peaks of 
Al-N, C-C, Al-H, C-H and N-CH bonds could be observed. 
Identification of peaks is as follows; (1) 770 cm-1 is related 
to Al-N and C-C bonds, (2) 1790 cm-1 is Al-H bond, and 
(3) 2780 cm-1 and 2980 cm-1 are both related to C-H and 
N-CH bonds [2]. Figure 9 shows the change in Al-H and 
Al-N peak areas as the substrate temperature is changed. 
Peak areas are defined as the integration of the peak over a 
baseline. Each IR spectrum was measured 10 min after 
MPA injection at the target temperature. The Peak area is 
proportional to average time of adsorption τ, where τ is 
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given by τ=τ0exp(E/kT) and E is the activation energy of 
desorption. The E of Al-H changed at 75°C as shown in Fig. 
9, although the E of Al-N did not change. This result is 
thought to be due to the adsorbed molecules changing from 
MPA to alane at 75°C.  The change of adsorbed molecules 
have shown that MPA decomposes to produce Al at the 
surface by the 2-step reaction as shown in Fig. 6. 
 
6. Conclusions 

We have investigated contact hole filling by 
CVD-Al/Flow-Al technology. Aluminum filling to a 
0.13µmφ contact hole with an aspect ratio of 8 was experi-
mentally confirmed. The Fourier-Transform Infra-
red-Spectroscopy (FT-IR) measurement demonstrated 
two-step MPA reaction. 
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Fig. 1  Molecular  

structure   
of MPA. 
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Fig. 2  Deposition rate of CVD-Al.
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(a) 105°C (thickness =70nm) (c) 125°C (90nm) 
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(b) 115°C (80nm) (d) 135°C (100nm) 
Fig. 3  SEM photos of CVD-Al on TiN/Ti.  

Deposition duration is 2min. 
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(a) LTS-Al at RT, 200nm 
Flow-Al at 400°C, 600nm 

(b) CVD-Al at 30Pa/105°C, 100nm
Flow-Al at 400°C, 600nm 

Fig. 4  SEM photos. Contact hole is 0.25µmφ with an aspect ra-
tio of 4.  
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(a) Contact hole (b) Surface 

Fig. 5  SEM photos of Al-CVD/Flow-Al. 
Contact hole is 0.13µmφ with an aspect ratio of 8. 
CVD-Al is deposited at 30Pa/105°C, and thickness is 80nm.  
600nm-thick Flow-Al is deposited at 400℃.  
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Fig. 6  The two-step reaction model 
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Fig. 7   FT-IR    

equipment. 
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Fig. 8  FT-IR spectrum.  Tsub=105°C P=0.8Pa 
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(a) Al-H 
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(b) Al-N 
Fig. 9  The peak area as a function of substrate temperature. 
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