CVD-Al/Flow-Al Technology for Filling Large Aspect Ratio Contact Holes

Manabu Sakamoto, Tomoharu Aoki, Kazuya Masu, Se Ju Lim1, Masanobu Hatanaka1, Michio Ishikawa1 and Yuji Furumura2

Precision and Intelligence Laboratory, Tokyo Institute of Technology
4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
Phone & Fax: +81-45-924-5031 E-mail: sakamoto@lsi.pi.titech.ac.jp
1Institute for Semiconductor Technologies, ULVAC Inc.
1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
2Philbridge Inc., 2-5-7 Hirakawacho, Chiyoda-ku, Tokyo 102-0093

1. Introduction
Filling low-resistivity metal into large-aspect-ratio contact/via holes is important technology in the fabrication of Si ULSI. This paper reports the filling capability of Al using CVD-Al/Flow-Al technology, which has superior filling capabilities. The importance of Al filling technology is (1) the possibility of eliminating the W-plug process that usually requires CMP or etch-back processes, resulting in low-contact-resistivity low-cost technology, and (2) compatibility with well-established contact/via processes. The filling technology is applied to system LSI and DRAM contacts.

This paper reports the filling capability of CVD-Al/Flow-Al technology and Fourier-Transform Infrared-Spectroscopy (FT-IR) measurement and discusses the deposition mechanism of methylpyrrolidine alane (MPA).

2. Al Precursor for CVD
Figure 1 shows the molecular structure of methylpyrrolidine alane (MPA), which is used in this study. MPA is a colorless liquid at room temperature, and exhibits selectivity, low flammability and chemical stability, which is believed to be due to the larger binding strength of Al-N as compared to DMEAA [1][2].

3. Al CVD Using MPA
Commercially available cluster apparatus is used for CVD-Al/Flow-Al. The available wafer size is 8-inch. MPA is delivered by the conventional bubbling method using Ar carrier gas. Figure 2 shows a deposition rate of CVD-Al as a function of temperature. The activation energy was found to be 0.20-0.23eV. Figure 3 shows the surface morphology of as-deposited CVD-Al. As deposition temperature increases, surface morphology becomes slightly rough. The carbon incorporation is less than 0.1% from the Auger depth profile measurement. As a seed layer for the subsequent Flow-Al process, continuous and thin Al is required [3]. At the present time, CVD-Al deposition at 105°C is used for filling.

4. Contact Hole Filling
The contact hole filling sequence is as follows. TiN(60nm)/Ti(40nm) layer is deposited by long-throw sputtering (LTS). The wafer is carried through an air environment to LTS-Al/Flow-Al or CVD-Al/Flow-Al apparatuses. The seed Al layer is deposited by LTS or CVD. Then, without exposing wafers to atmosphere, Flow-Al is deposited; thick Al is deposited by sputtering method at a relatively high temperature of 400°C. During the sputtering duration at high temperature, Al is flowed to fill contact holes. The sequence is a so-called 2-step filling process. LTS-Al is deposited at room temperature and CVD-Al is deposited at 105°C/30 Pa.

As shown in Fig. 4(a), 0.25 μm φ contact holes with an aspect ratio of 4 cannot be filled by the LTS-Al/Flow-Al process. In the 2-step process, step coverage of the seed layer is a key issue. If the sidewalls and bottoms of contact holes are not covered by the seed layer, contact holes cannot be filled by the subsequent Flow-Al process. Because of the inferior step coverage of LTS-Al, contact holes are not filled by subsequent Flow-Al deposition. As shown in Fig. 4(b), however, the contact holes are filled by the CVD-Al/Flow-Al process. Figure 5(a) shows the filling of contact holes of 0.13 μm φ with an aspect ratio of 8. However, although the diameter of this hole is reduced at the middle of the hole, the hole is successfully filled by CVD-Al/Flow-Al. Figure 5(b) shows the mirror-like Al surface on TiN/Ti. The relative reflectivity of the Si surface is sufficiently high, being 208% at 480 nm.

5. FT-IR Analysis of Al-CVD Using MPA
The gas phase decomposition of MPA is known as shown in Fig. 6 [2]. Surface reaction of MPA on TiN/Ti/SiO2/Si surface was investigated by Fourier-Transform Infrared-Spectroscopy (FT-IR) measurement. Figure 7 shows a schematic of the measurement system. MPA is directly injected into the chamber. No inert gas is used in this experiment. Figure 8 shows FT-IR spectrum at 50°C and a chamber pressure was 0.8 Pa. Peaks of Al-N, C-C, Al-H, C-H and N-CH bonds could be observed. Identification of peaks is as follows; (1) 770 cm⁻¹ is related to Al-N and C-C bonds, (2) 1790 cm⁻¹ is Al-H bond, and (3) 2780 cm⁻¹ and 2980 cm⁻¹ are both related to C-H and N-CH bonds [2]. Figure 9 shows the change in Al-H and Al-N peak areas as the substrate temperature is changed. Peak areas are defined as the integration of the peak over a baseline. Each IR spectrum was measured 10 min after MPA injection at the target temperature. The Peak area is proportional to average time of adsorption τ, where τ is proportional to average time of adsorption τ, where
given by \(\tau = \tau_0 \exp(E/kT) \) and \(E \) is the activation energy of desorption. The \(E \) of Al-H changed at 75°C as shown in Fig. 9, although the \(E \) of Al-N did not change. This result is thought to be due to the adsorbed molecules changing from MPA to alane at 75°C. The change of adsorbed molecules have shown that MPA decomposes to produce Al \textit{at the surface} by the 2-step reaction as shown in Fig. 6.

6. Conclusions
We have investigated contact hole filling by CVD-Al/Flow-Al technology. Aluminum filling to a 0.13\(\mu \)m\(\varnothing \) contact hole with an aspect ratio of 8 was experimentally confirmed. The Fourier-Transform Infrared-Spectroscopy (FT-IR) measurement demonstrated two-step MPA reaction.

References