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1. Introduction 
In scaled-down LSI, the trade-off relationship between process 

margin and circuit performance becomes more serious. 
Conventionally, worst-case analysis is widely used to calculate 
process margin. To realize good performance and high yield LSI in 
short time, accurate device statistical models are required in early 
stages of the development. Some groups have proposed 
TCAD-based approaches and these approaches give good 
prediction of device variations.  

Fully-depleted (FD) SOI MOSFET has advantages in short 
channel effects and subthreshold characteristics [1]. On the other 
hand, FD-SOI characteristics fluctuate easily by SOI thickness 
(Tsi) variation [2]. To realize good performance and high yield 
FD-SOI devices, we have to predict device fluctuation accurately 
including Tsi effects. This is the first problem tackled by this work. 
Furthermore, it is not clear whether such prediction can be applied 
to worst-case analysis in which correlation of nMOSFETs and 
pMOSFETs is important. This is the second problem of this work. 
The aim of this work is to clarify these two problems through the 
comparison of TCAD predictions to manufactured distributions. 
 
2. Method 

To give good TCAD prediction, it is important to adjust the 
model parameters to experiment data [3]. Typical simulation 
results by using the calibrated model are compared to fabrication 
data in Fig.1. Calibrated TCAD models agree well with 
dependence of threshold voltage on Tsi and gate length (Lg). 
Overall errors of these models are below 0.03 volts. The model 
accuracy is sufficient to be used in further statistical analysis. 
 It should be mentioned here that cross-term sensitivity of Tsi and 
Lg is the key point of this calibration. Because short channel 
effects of FD-SOI depend strongly on Tsi. 
 
3. Results 
(1) Device variation analysis 

In order to confirm the validity of TCAD model applied to σTsi 
effects, simulations are compared with fabrication data. First, a 
number of TCAD simulations are performed according to design 
of experiments (DoE) taking process condition as parameters [4]. 
Next, response surface functions (RSF’s) of Vth and Ids are 
extracted from simulation results. Monte Carlo method is applied 
to these RSF’s and results are compared to statistical distributions 
of fabrication data. For both short (Fig.2) and long (Fig.3) channel 
devices, TCAD /RSF’s results agree well with fabrication data. 

Fig.4 shows comparison of σTsi-σVth between long channel 
and short channel. It is noteworthy that variation of long channel 
characteristics is larger than short channel’s. When Tsi changes 
10nm, Vth changes 0.03V for short channel devices and 0.05V for 
long channel devices. In long channel devices, Tsi affects 
positively to Vth’s. But in short channel devices, Tsi affects 
negatively because of short channel effect. Thus, long channel 
devices have more serious problem concerning Tsi variation. 

For the prediction of short channel devices, the cross-term 
effects of Tsi and Lg on Vth are important. In the case of Fig.2, 
cross-term effects are as large as 25% of Lg variation effects.  

 

(2) Correlation between nMOSFET and pMOSFET device 
characteristics 

Process variations are considered in circuit design by worst-case 
models or recently by statistical model [5]. Typical worst-case 
models are represented by correlation of nMOS and pMOS 
saturation current (Idsat). Fig.5 and Fig.6 show scatter plots of Ids 
of nMOSFETs (Idn) and pMOSFETs (Idp) obtained from 
fabrication data (Fig.5) and from RSF’s (Fig.6). In this case, we 
compared long channel devices, because short channel devices are 
affected by gate length's variation. With including σTsi, RSF’s 
results agree well with fabrication data. As σTsi becomes large, 
not only σIdn and σIdp but also correlation factors of them 
become large. This is because Tsi of nMOSFETs and pMOSFETs 
in a chip are almost equal. Thus, TCAD approach predicts the 
correlation factors of nMOSFETs and pMOSFETs accurately 
considering Tsi effects. 
 
4. Conclusions 

We present FD-SOI devices variation analysis by the 
TCAD/RSF approach. 
1) TCAD approaches are useful for the early prediction of FD-SOI 
variations. The key point for this approach is to care the accuracy 
for cross-term effects of Tsi and Lg.  
2) For the effects of σTsi to device fluctuations are more serious in 
long channel device. In short channel devices, a part of Tsi effects 
is canceled by short channel effects. 
3) The correlation factors of nMOSFETs and pMOSFETs become 
larger when σTsi is large. This is also an important point for 
circuit design of FD-SOI’s. Sufficient accuracy of statistical model 
is obtained by the TCAD/RSF approach considering σTsi.  

As one of the novel devices, FinFET is proposed. Fig.7 shows 
FinFET simulation results using Selete 3-D process/device 
simulator ENEXSS [6]. When Fin height (Tsi) changes 5nm, Vth 
changes about 0.07V. The influence of FinFET of Tsi is larger than 
FD-SOI. For FinFET design, since Tsi control becomes still more 
important, it is thought that the importance of this approach 
increases. 
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Fig.1 Vth-Lgate comparison between calibrated
model (lines) and fabrication data (dots) 
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Fig.7 FinFET Id-Vg simulation 
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Fig.4 Comparison of σTsi-σVth between long
channel and short channel  
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Fig.2 Measured histograms of Vth. TCAD results (lines with marks) agree well with experimental data (poles) 
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Fig.3 Measured histograms of Vth (Lg=1.0um) 
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Fig.5 Scatter plots of Ids of nMOSFETs (Idn) and pMOSFETs (Idp) obtained 
from fabrication data 
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Fig.6 Scatter plots of Vth of nMOSFETs (Vtn) and pMOSFETs (Vtp) obtained from RSF’s 
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