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1. Introduction
Quantum information processing in solid state nanos-
tructures has attracted wide spread attention because of
the potential scalability of such devices[1-3]. Recently,
two-qubit coherent evolution and possibly entanglement
have been observed in capacitively coupled Cooper pair
boxes [4]. Since the realization of controlled two-qubit
entanglement is regarded as a crucial milestone for the
study of solid state quantum computing, it is important
to search for the optimal configuration for a detector that
is sensitive to two-qubit information, and to develop a
proper formalism to study two-qubit measurement pro-
cesses. In this paper we study a particular scheme for the
quantum measurement of two charge qubits by quantum
point contacts (QPCs) that are capacitively coupled to
the qubits composed of quantum dots (QDs)(Fig.1).

2. Formulation
The Hamiltonian for the combined two qubits and the
QPCs is written as H = Hqb+Hqpc+Hint. Hqb is the qubit
part which can be written as Hqb =

∑
α=L,R(Ωασαx +

∆ασαz)+JσLzσRz ,where Ωα and ∆α are the inter-QD
tunnel coupling and energy difference (gate bias) in the
qubit. Here we use the spin notation such that σαx ≡
a†

αbα + b†αaα and σαz ≡ a†
αaα − b†αbα (α = L, R), where

aα and bα are the annihilation operators of an electron
in the upper and lower QDs of each qubit. J is a cou-
pling constant between the two qubits, originating from
capacitive couplings in the QD system [5]. Hqpc is the
QPC part:

Hqpc=
∑

α=L,R

∑
iαs=↑,↓

(
Eiαc†iαsciαs+Vαs(t)(c

†
iαsds + d†

sciαs)
)

+
∑
s=↑,↓

Edd†
sds + Ud†

↑d↑d
†
↓d↓ . (1)

Here ciLs(ciRs) is the annihilation operator of an elec-
tron in the iLth (iRth) level (iL(iR) = 1, ..., n) of the
left(right) electrode, and ds is the electron annihilation
operator of the QPC island. Hint is the interaction be-
tween the qubits and the QPCs.

Hint =
∑

α=L,R

∑
iα,s

δVαs(t)(c†αsds + d†sciαs)σαz (2)

Through this interaction, qubit states | ↓↓〉≡|A〉, | ↓↑〉≡
|B〉, | ↑↓〉≡ |C〉, and | ↑↑〉≡ |D〉 can vary the QPC tun-
neling rate in the form of Γ(±)

α ≡ 2πρα(E)|V (±)
α (E)|2 and

Γ(±)′
α ≡ 2πρα(E+U)|V (±)

α (E+U)|2, where V
(±)
α =Vα±δVα,

and ρα(E) is the density of states of the electrodes (α

= L, R). We construct the equations of qubits-QPCs
density matrix elements at T =0, following the procedure
developed by Gurvitz[6]. The wave function |Ψ(t)〉 of the
system can be expanded over the states of the qubits and
the island between the two QPCs (Fig.2). This method is
applicable as long as the energy-levels of the island is in-
side the chemical potentials of both electrodes. Assuming
that there is no magnetic field, after lengthy calculations,
we obtain 48 equations for the density matrix elements
ρu

z1z2
(t) (u indicate quantum states of the detector (Fig.2)

and z1, z2 = A,B, C,D are those of the qubits) as

dρa
AA

dt
=−2Γ

(−)
L ρa

AA−iΩR(ρa
BA−ρa

AB)−iΩL(ρa
CA−ρa

AC)

+Γ
(−)
R (ρb↑

AA+ρb↓
AA)

dρa
AB

dt
=(i[JB−JA]−2Γ

(−)
L )ρa

AB−iΩR(ρa
BB−ρa

AA)

−iΩL(ρa
CB−ρa

AD)+

√
Γ

(−)
R Γ

(+)
R (ρb↑

AB +ρb↓
AB)

..... (3)

where JA=∆L+∆R+J , JB=∆L−∆R−J , JC=−∆L+∆R−J ,
JD=−∆L−∆R+J . The measurement strength on the qubits

can be estimated by the dephasing rate as Γ
(α)
d ≡ (

√
Γ

(+)
α −√

Γ
(−)
α )2. The readout current is obtained as[6]

I(t) = eΓR[ρb↑(t) + ρb↓(t)] + 2eΓ′
Rρc(t). (4)

where ρu is given by ρu ≡ ρu
AA+ρu

BB+ρu
CC+ρu

DD. We choose
ΓL

A = ΓL
B = ΓR

A = ΓR
C = Γ(−) = 0.8Γ, ΓL

C = ΓL
D = ΓR

B = ΓR
D =

Γ(+) =1.2Γ, which lead to Γd ∼ 0.04Γ as a typical case (Γ is
a tunneling rate without qubits).

3. Numerical results
Figure 3 shows the time-dependent current near t ∼ 0 as-
suming that the two qubits are initially in either of the four
product states. At small t state |A〉 suppresses the current
the most while state |D〉 the least. Thus we can distinguish
the four product states by the readout current. Hereafter we
will focus on the J = 0 case.

In quantum Zeno effect, a continuous measurement slows
down transitions between quantum states due to the collapse
of the wave function into observed states. We show the Zeno
effect of two qubits in Fig 4, where the initial state is |D〉 state
(ρDD(t = 0) = 1). As the measurement strength increases (Γd

increases), the oscillations of density matrices of qubits are
delayed, which is a clear evidence of the slowdown described
by the Zeno effect.

Strong measurement destroys entangled states such as the
Bell states: |e1〉=(|↓↓〉+|↑↑〉)/√2, |e2〉=(|↓↓〉−|↑↑〉)/√2, |e3〉=
(|↓↑〉+| ↑↓〉)/√2, and |e4〉=(|↓↑〉−| ↑↓〉)/√2. The measure of
entanglement is estimated from the reduced density matrix of
the qubits using the concept of concurrence[7].Figure 5 shows
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the relation between the time-dependent concurrence of the
singlet state (|e4〉(= (|B〉−|C〉)/√2)) and Γd, showing that
the strong measurement degrades the entanglement quickly.

In charge qubits, the wave functions of the entangled
states is expected to extend over the qubits compared with
the product states. For example, the density matrix equa-
tions for a singlet state |e4〉 of free qubits(Hint = 0) satisfy

ρ̇BB + ρ̇CC− ρ̇BC− ρ̇CB = 0 (Γ
(+)
α = Γ

(−)
α in Eq.3). This sug-

gests that the charge distribution of the singlet state is less
effective on influencing the readout current. Indeed we found
that the readout currents of the entangled states are uniform
compared with the product states shown in Fig.6. These fea-
tures hold as long as the entangled states are close to the Bell
states. Figure 7 shows the time-dependent current of the gen-
eralized singlet state cos θ| ↑↓〉+eiϕ sin θ| ↑↓〉 in the range of

ϕ = π, 0
<
=θ

<
=π/2.

4. Conclusion
We have solved master equations and described various time-
dependent measurement processes of two charge qubits by
two QPCs. The current through the QPCs is shown to be an
effective means to measure results of quantum calculations
and entangled states.
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Fig.1�Qubits are capacitively coupled 
to QPCs as a detector.
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Fig.7:Time dependent current 
from |B� state to |C� state 
through singlet state (|e4�). 
ΩL=ΩR=0.75Γ, J=0, Γd=0.04Γ.

Fig.6:Time dependent current of |B� state ((a)) and 
singlet state |e4� ((b)) when Vg(=∆L=∆R) changes. 
ΩL=ΩR=0.75Γ, J=0, Γd=0.04Γ.  The singlet state is 
robust to the measurement.

Fig.3:Time dependent current of four product qubit 
states. |A�=|���, �B�=����, �C�=����, �D�=����.

ΩL=ΩR=0.75Γ, Γd=0.04Γ. (a) J=0, (b) J=Γ.

Fig.4:Time dependence of ρAA,ρBB,ρCC and ρDD when 
the strength of measurement  Γd increases. 
ΩL=ΩR=0.75Γ, J=0. As Γd increases, the coherent 
motions of qubits slow down (Zeno effect).

tΓ

|A>
|B>
|C>
|D>

0.5 1 1.5 2

(a) (b)

tΓ

I(
t)

|A>
|B>
|C>
|D>

0 0.5 1 1.5 2

0.4

0.8

1.2

Fig.5:Time dependent 
concurrence of a singlet 
state |e4� as a function of 
the dephasing rate Γd.
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Fig.2�Electronic 
states of an island 
between the QPCs.
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