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1. Introduction 

Semiconductor nanostructures possess fascinating 
physical properties and are attractive to diverse applications, 
such as quantum computing, lasers, infrared photo detectors, 
and spintronics. Single quantum dot (or ring) has been a 
subject of intensely studies over the last years [1-4]. 
Advanced fabrication technology has allowed us to study 
the coupled nanostructures in particular the vertically 
coupled quantum dots and rings (VCQDs and VCQRs) [3]. 
Various works have focused on the VCQDs [3]. 1D and 2D 
approaches applied a lateral geometry with confinement 
potential, but did not consider effects, such as the geometry, 
hard wall confinement potential, and non-parabolic band 
approximation [3]. It should be examined when studying 
the tunneling ability and the electronic structure by 
dot-to-dot electronic entanglement and the charge 
transferability. In exploring the physical properties of these 
systems, 3D modeling definitely plays a significant role. 

With a unified 3D modeling and simulation we for the 
first time study the inter-distance d, structure size and shape, 
and the magnetic field B effects on the electronic structure 
for VCQDs and VCQRs systematically. It is found that 
there are quite different energy transition phenomena 
depending on d and the applied B between the structures.  
 
2. Theoretical Model and Solution Method 

As shown in Figs. 1 and 5, the disk- and conical-shaped 
(DI- and CO-shaped) InAs/GaAs semiconductor VCQD 
and VCQR are investigated. Our model considers: (1) the 
effective 3D one-electronic-band Hamiltonian, (2) the 
energy- and position-dependent approximation for electron 
effective mass and Landé factor, (3) the finite hard wall 
confinement potential, and (4) the Ben Daniel-Duke 
boundary conditions. For a system in the one-band 
envelope-function formalism, effective Hamiltonian is [4]  
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where Πr is the electron momentum vector, V(r) is the 
confinement potential, m(E,r) and g(E,r) are the electron 
effective mass and Landé factor [4]. The hard-wall 
confinement potential in the system (S) and environmental 
crystal matrix (M) is: Vi (r) = 0 for all r in S and Vi(r) = 
Vi0 for all r in M. σ is the vector of the Pauli matrix. The 
Ben Daniel-Duke boundary condition for the electron 
wavefunction Ψ(r) between material interface rs is 
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Without any artificial fitting parameters, the derived 
problem (1)-(2) is solved self-consistently with a 
generalized nonlinear iterative method [4]. From our 
experience it solves complicated nanostructures efficiently. 
 
3. Results and Discussion 

In our investigation, all nanostructures have the same 

volume and the radius R (Rdot = 100 Ao, Rin
ring = 100 Ao, 

and Rring = 200 Ao [1-4]) is fixed for all shapes. Figs. 2 and 
6 are the electron transition energy versus d for the VCQDs 
and VCQRs at B = 0 T. For a fixed structure volume, radii, 
and d, the electron wavefunction is well confined in the 
DI-shaped VCQR. This produces a sizable energy (angular 
momentum l = 0) variation (Fig. 6a) among the structures 
when d is changed. We also find the VCQRs have larger 
tunneling ability than that of the VCQDs. We note that for 
CO-shaped VCQDs and VCQRs (Figs. 2b and 6b.), the first 
excited state (|l| = 1) energy is less dependent on d. Figs. 3 
and 7 clearly confirm the wavefunction localizations. For a 
fixed d, as shown in Figs. 4 and 8, the electron energy 
states of the VCQRs strongly depend on the applied B and 
have a transition between configurations with the lowest 
energy state corresponding to l = 0,-1,-2, … and spin = 
+1/2. It is found that the DI-shaped VCQR (Fig. 8a) has 
significantly nonperiodical Aharonov-Bohm oscillation 
[2,4] which does not obey the well-known 1D periodical 
rule. This transition energy of VCQRs relates to the 
persistent current and is useful in optical-magneto devices 
[1-3]. We observe that the first fracture Φc of the VCQRs is 
greater than the commonly quoted value Φ0/2 (Φ0 is the 
quantum of magnetic flux). However, as shown in Fig. 4 
both the VCQDs have the diamagnetic shifts slightly when 
the applied B increases [4]. 
 
4. Conclusions 
   In summary, the topology and magnetic field effects on 
the electronic structure for nanoscale InAs/GaAs VCQDs 
and VCQRs has been explored. With the developed 3D 
simulator, we have found different dependence of d and B 
for these nanostructures. The electron wavefunction is well 
confined in the DI-shaped VCQR, so among structures it 
has largeste energy variation when d is changed. When B is 
applied, the DI-shaped VCQR also shows a strongly 
nonperiodical transition oscillation. 
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