Investigation of Electron Transition Energy for Vertically Coupled InAs/GaAs Semiconductor Quantum Dots and Rings

Yiming Li^{1,2} and Hsiao-Mei Lu³

¹Department of Nano Device Technology, National Nano Device Laboratories, Hsinchu 300, Taiwan ²Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu 300, Taiwan ³Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612, USA

Phone: +886-930-330766

1. Introduction

Semiconductor nanostructures possess fascinating physical properties and are attractive to diverse applications, such as quantum computing, lasers, infrared photo detectors, and spintronics. Single quantum dot (or ring) has been a subject of intensely studies over the last years [1-4]. Advanced fabrication technology has allowed us to study the coupled nanostructures in particular the vertically coupled quantum dots and rings (VCQDs and VCQRs) [3]. Various works have focused on the VCQDs [3]. 1D and 2D approaches applied a lateral geometry with confinement potential, but did not consider effects, such as the geometry, hard wall confinement potential, and non-parabolic band approximation [3]. It should be examined when studying the tunneling ability and the electronic structure by dot-to-dot electronic entanglement and the charge transferability. In exploring the physical properties of these systems, 3D modeling definitely plays a significant role.

With a unified 3D modeling and simulation we for the first time study the inter-distance d, structure size and shape, and the magnetic field **B** effects on the electronic structure for VCQDs and VCQRs systematically. It is found that there are quite different energy transition phenomena depending on d and the applied **B** between the structures.

2. Theoretical Model and Solution Method

As shown in Figs. 1 and 5, the disk- and conical-shaped (DI- and CO-shaped) InAs/GaAs semiconductor VCQD and VCQR are investigated. Our model considers: (1) the effective 3D one-electronic-band Hamiltonian, (2) the energy- and position-dependent approximation for electron effective mass and Landé factor, (3) the finite hard wall confinement potential, and (4) the Ben Daniel-Duke boundary conditions. For a system in the one-band envelope-function formalism, effective Hamiltonian is [4]

$$\hat{H} = \boldsymbol{\Pi}_{\mathbf{r}} \frac{1}{2m(E,\mathbf{r})} \boldsymbol{\Pi}_{\mathbf{r}} + V(\mathbf{r}) + \frac{1}{2}g(E,\mathbf{r})\mu_{B}\mathbf{B}\boldsymbol{\sigma}$$
(1)

where $\Pi_{\mathbf{r}}$ is the electron momentum vector, V(r) is the confinement potential, $m(E,\mathbf{r})$ and $g(E,\mathbf{r})$ are the electron effective mass and Landé factor [4]. The hard-wall confinement potential in the system (S) and environmental crystal matrix (M) is: V_i (\mathbf{r}) = 0 for all \mathbf{r} in S and V_i(\mathbf{r}) = V_{i0} for all \mathbf{r} in M. $\boldsymbol{\sigma}$ is the vector of the Pauli matrix. The Ben Daniel-Duke boundary condition for the electron wavefunction $\Psi(\mathbf{r})$ between material interface \mathbf{r}_s is

$$\Psi_{1}(\mathbf{r}_{s}) = \Psi_{2}(\mathbf{r}_{s}) \text{ and } \left\{ \frac{\hbar^{2}}{2m(E,\mathbf{r})} \boldsymbol{\nabla}_{\mathbf{r}} \right\}_{n} \Psi(\mathbf{r}_{s}) = \text{constant.}$$
(2)

Without any artificial fitting parameters, the derived problem (1)-(2) is solved self-consistently with a generalized nonlinear iterative method [4]. From our experience it solves complicated nanostructures efficiently.

3. Results and Discussion

In our investigation, all nanostructures have the same

volume and the radius R ($R^{dot} = 100 A^{\circ}$, $R_{in}^{ring} = 100 A^{\circ}$, and $R^{ring} = 200 A^{o} [1-4]$) is fixed for all shapes. Figs. 2 and 6 are the electron transition energy versus d for the VCQDs and VCQRs at $\mathbf{B} = 0$ T. For a fixed structure volume, radii, and d, the electron wavefunction is well confined in the DI-shaped VCQR. This produces a sizable energy (angular momentum l = 0 variation (Fig. 6a) among the structures when d is changed. We also find the VCQRs have larger tunneling ability than that of the VCQDs. We note that for CO-shaped VCQDs and VCQRs (Figs. 2b and 6b.), the first excited state (|l| = 1) energy is less dependent on d. Figs. 3 and 7 clearly confirm the wavefunction localizations. For a fixed d, as shown in Figs. 4 and 8, the electron energy states of the VCQRs strongly depend on the applied **B** and have a transition between configurations with the lowest energy state corresponding to $l = 0,-1,-2, \dots$ and spin = +1/2. It is found that the DI-shaped VCQR (Fig. 8a) has significantly nonperiodical Aharonov-Bohm oscillation [2,4] which does not obey the well-known 1D periodical rule. This transition energy of VCQRs relates to the persistent current and is useful in optical-magneto devices [1-3]. We observe that the first fracture Φ_c of the VCQRs is greater than the commonly quoted value $\Phi_0/2$ (Φ_0 is the quantum of magnetic flux). However, as shown in Fig. 4 both the VCQDs have the diamagnetic shifts slightly when the applied **B** increases [4].

E-mail: ymli@mail.nctu.edu.tw

4. Conclusions

In summary, the topology and magnetic field effects on the electronic structure for nanoscale InAs/GaAs VCQDs and VCQRs has been explored. With the developed 3D simulator, we have found different dependence of d and **B** for these nanostructures. The electron wavefunction is well confined in the DI-shaped VCQR, so among structures it has largeste energy variation when d is changed. When **B** is applied, the DI-shaped VCQR also shows a strongly nonperiodical transition oscillation.

Acknowledgements

This work is supported in part by the grants: NSC 91-2112-M-317-001 and PSOC 91-EC-17-A-07-S1-0011 in Taiwan.

References

- H. Akinaga and H. Ohno, IEEE T. Nanotech., 1 19 (2002); A. Fuhrer, et al., Nature 413 822 (2001); D. Bimberg, et al., Thin Solid Films 367 235 (2000).
- [2] R. Blossey, et al., Phys. Rev. E 65 021603 (2002); A. Lorke, et al., Phys. Rev. L 84 2223 (2000); A. Emperador, et al., Phys. Rev. B 62 4573 (2000); A. Bruno-Alfonso, et al., Phys. Rev. B 61 15887 (2000); A. Fuhrer, et al., Microelec. Eng. 63 47 (2002).
- X. Hu, et al., Phys. Rev. A 61 062301 (2000); P. Yu, et al., Phys. Rev. B 60 16680 (1999); W. Xie, et al., Phys. Lett. A 245 297 (1998).
- [4] Y. Li, et al., Jpn. J. App. Phys. 41 2698 (2002); Comput. Phys. Commun. 147 209 (2002); Extended Abstract of SSDM 2002, p. 574.

Fig. 1. Three-dimensional and cross section plots for (a) DI- and (b) CO-shaped InAs/GaAs quantum dots.

Fig. 3. Electron wavefunction of the vertically coupled DI- (a) and the CO-shaped (b) InAs/GaAs quantum dots for l = 0 and $\mathbf{B} = 0$ T.

Fig. 5. Three-dimensional and cross section plots for (a) DI- and (b) CO-shaped InAs/GaAs quantum rings.

Fig. 6. Electron transition energy vs. ring distance d for the vertically coupled (a) DI- and (b) CO-shaped InAs/GaAs quantum rings at $\mathbf{B} = 0$ T.

Fig. 7. Electron wavefunction of the vertically coupled DI- (a) and the CO-shaped (b) InAs/GaAs quantum rings for l = 0 and $\mathbf{B} = 0$ T.

