Top-Gate Carbon-Nanotube Field-Effect Transistors with Very High Intrinsic Transconductance

Fumiyuki Nihey1,3, Hiroo Hongo1,3, Yukinori Ochiai1,3, Masako Yudasaka1,2, and Sumio Iijima1,2,4,5

1Fundamental Research Laboratories, NEC Corporation, Tsukuba 305-8501, Japan
Phone: +81-29-850-1584 Fax: +81-29-856-6139 E-mail: nihey@frl.cl.nec.co.jp
2Japan Science and Technology Corporation, c/o NEC Corporation, Tsukuba 305-8501, Japan
3Japan Fine Ceramics Center, c/o National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
4Research Center for Advanced Carbon Materials, AIST, Tsukuba 305-8565, Japan
5Faculty of Science and Technology, Meijo University, Tenpaku-ku, Nagoya 468-8502, Japan

1. Introduction

Carbon-nanotube field-effect transistors (CNTFETs) are expected to have performance greatly exceeding Si-MOSFETs [1,2]. Advances in device structures such as top gates [3,4] and high-k [2,4] dielectrics have gained high extrinsic transconductance. However, intrinsic performances of CNTFETs have been veiled due to low yields and unstable parasitic effects such as contact resistances.

Intrinsic performance of CNTFETs was investigated by using top-gate structures. Top gates, located on CNTs and far away from source and drain electrodes, have ensured the FET operation by carrier-density control [4]. Reliable device fabrication process utilizing high-yield on-wafer chemical vapor deposition (CVD) [5] of CNTs together with contact technology have enabled us to accomplish systematic studies.

Transconductance of our device reaches 8.7 μS at a drain voltage of -1 V. Intrinsic transconductance is estimated to be 20μS (13000 μS/µm) in consideration of the parasitic resistance. We also found that the parasitic resistance is dominated by the extension parts of CNTs for our devices. We expect that the performance of CNTFETs will advance further by improving CNT quality and optimising the device structures.

2. Experimental

CNTs were grown by CVD [5] from sub-micron Fe catalyst islands on Si/SiO$_2$ substrates. Source and drain electrodes were defined to surround Fe islands partially as shown in Fig. 1 (a). A limited number of CNTs bridged the 1-µm gap between the source and drain electrodes as shown in Fig. 1 (b). Gate electrodes were located on CNTs with a gate length of 210 nm on CNTs in between the source-drain gaps. The gate dielectric is very thin (2-3 nm) TiO$_2$ with high dielectric constant (40-90).

3. Results and Discussion

Drain current I_D depends on drain voltage V_{DS} almost linearly and reaches 8 μA at $V_{DS} = -1$ V as shown in Fig. 2 (a) for a CNTFET with a CNT diameter of 1.5 nm. Drain current I_D is suppressed as gate voltage V_G increases, similar to p-type depletion-mode FETs. The transconductance $g_m = \Delta I_D/\Delta V_G$ is 8.7 μS for $V_{DS} = -1$ V as shown in Fig. 2 (b). Apparent transconductance per unit channel width is 5800 μS/µm by assuming the CNT diameter (1.5 nm) as the channel width, about one order as high as those of state-of-art Si-MOSFETs. The parasitic resistance R_p of the device is 130 kΩ, obtained from the I_D saturation observed for $V_G \leq -0.6$ V. From R_p, intrinsic transconductance is estimated as $g_m = g_m/(1 - g_m R_p/2) = 20 \mu$S per tube (13000 μS/µm), which expresses a remarkably high value.

Drain current I_D at $V_{DS} = -100$ mV as a function of V_G for different CNTFETs is shown in Fig. 3 (a). Scaling plot indicates that all samples show an identical tendency except for the scaling factor [Fig. 3 (b)]. Figure 3 (c) shows the CNT diameter dependence of $1/R_p$, g_m, and g_m^p. Both g_m and g_m^p change in conjunction with 1/R_p, consistent with the scaling plot.

Figure 3 (d) shows R_p as a function of 1/g_m and of 1/g_m^p, indicating a linear relation. The parasitic resistance is the sum of contact resistance, $R_{contact}$, and the CNT resistance at the extension parts between the gate and source/drain, R_{ext}, i.e., $R_p = R_{contact} + R_{ext}$. As R_{ext} \propto 1/g_m and $g_m^p \propto \mu$, where μ is CNT mobility, thus the relation $R_p \approx R_{contact} + A/g_m$, where A is a constant, should be satisfied. It is concluded from Fig. 3 (d) that the contribution of R_{ext} to R_p is larger than $R_{contact}$. The extension resistance can be decreased by improving the quality of CNTs and by decreasing the distances between the gate and source/drain electrodes.

Conclusion

Intrinsic performance of CNTFETs was investigated by using top-gate structures. Intrinsic transconductance is estimated to be 20 μS (13000 μS/µm), which is a remarkably high value. Parasitic resistance is dominated by the extension parts for our devices. We expect that the performance of CNTFETs will advance further by improving the CNT quality and optimising the device structures.

Acknowledgements

We thank Dr. T. Baba for valuable discussions. This work is partially supported by NCT project of METI/NEDO, Japan.

References

Figure 1: (a) An AFM image of a top-gate CNTFET. (b) An AFM image of a CNT spanning the gap between the source and drain. Inset: schematic structure of the CNTFET.

Figure 2: (a) I_D as a function of V_{DS} for $V_{DS} = -100 \text{ mV}$. Data were taken from single-CNT devices (diameters: 0.9 nm, 1.4 nm, and 1.5 nm for each) and from a double-CNT device (2.0 nm and 2.1 nm). (b) Scaling plot of I_D–V_G data normalised by I_D at $V_G = -1.0 \text{ V}$. (c) Measured transconductance g_m, expected intrinsic transconductance g_{mi}, and the inverse of parasitic resistance $1/R_p$ as a function of CNT diameter. Data taken from a double-CNT device (as indicated by asterisks) were divided by a factor of 2. (d) R_p as a function of $1/g_m$ and $1/g_{mi}$.