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Photonic crystals are 3D periodically patterned 

structures which behave as artificial materials exhibiting 
unique dielectric properties at optical frequencies. The 
authors have developed a fabrication process, the 
"Autocloning" technology of photonic crystals. 

This paper reviews 
(1) Unique dielectric properties of photonic crystals 
(2) Straightforward application of the bulk property to 

display/optcomm 
(3) One-Batch Integration of multiple patterns: in-plane 

and plane-normal 
(4) Integration of sophisticated, "fantastic" guided wave 

devices onto a chip: Heterostructured photonic 
crystals.  
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Fig. 1 Schematic of autocloning. It is based on combination of sputter deposition and sputter etching. The surface 
corrugation which reflects the substrate pattern is preserved automatically while stacking multilayers. 

Table I 
Features of photonic crystals by autocloning 

 
- Reliability 
- Mass-productivity 
- Multi-pattern 
- Lattice modulation 

Table II  Comparison of several candidates of the “next generation PLC”: pros and cons 
  Developing. Example of the current technologies 
 Silica PLC Si channel Sub-µm PhC Heterostructure 

Spot size 5～10mm ～0.5mm ～0.5mm ～5mm 

Dielectric characteristics of the 
material Ordinary  

Wide DBR stopband 
Superprism 

Strong l-dependence of group delay 

Propagation loss 0.1dB/cm ～5dB/mm 
～10dB/mm 

Other structure  
for wiring 

～0.1dB/mm 
Good match with 
functional parts 
～500mm 
～0.2dB Radius of bends 2～5mm ～2mm 

<1dB 
～2mm 
～1dB Corner reflector 

Coupling with fibers Excellent Lens required? Good 

Productivity Excellent   Very good 
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Fig.2 Autocloned photonic crystal polarization beam splitter. 
The right is a transmission spectra. Insertion loss is typically 
0.1dB, and extinction ratio is more than 40 dB for 
λ=1550nm. 
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Fig. 3 Integrated multi-channel wavelength filter fabricated 
on a substrate having several patterns whose periods are 
different from each other. 
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Monolithic Integration!

Fig. 4 Free space isolator: smallest and simplest. Photonic 
crystal polarizers can be fabricated on a Faraday rotator 
directly.  
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Fig. 5 Novel configuration of optical circulator.  
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Fig. 6 Hetero-structured photonic crystal waveguide. Light is 
confined with difference of effective refractive indices 
caused by modulation of periods. 
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Fig. 7 Low-loss characteristics of a hetero waveguide. The 
upper is a measurement system. 
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Fig. 8 Hetero-structured Bragg-reflection resonator. 

SEM image (bird’s-eye view) 
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