Low-Power Real-Time Region-Growing Image-Segmentation in 0.35µm CMOS due to Subdivided-Image and Boundary-Active-Only Architectures

Takashi Morimoto, Youmei Harada, Tetsushi Koide, and Hans Jürgen Mattausch

Research Center for Nanodevices and Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima,739-8527, Japan Phone: +81-824-24-6265 Fax: +81-824-22-7185 email: {morimoto, harada, koide, hjm}@sxsys.hiroshima-u.ac.jp

1. Introduction

The extraction process of the different objects from natural input images is called *image segmentation*. For this necessary first step of object-oriented image processing, strong demands of real-time processing in moving-picture applications like intelligent robots or moving object recognition exist. Several segmentation algorithms [1,2] and real-time segmentation architectures [3,4,5] have already been proposed. However, the emphasis on real-time processing has led to insufficient consideration of the low-power dissipation issue. In this paper, we propose an improved version of our previous real-time image segmentation architecture for gray-scale/color images [5], which additionally assures low-power dissipation. More than 75% power-reduction are achieved, without sacrificing realtime processing, by adding a boundary-active-only (BAO) scheme for the region-growing process and by replacing some power-hungry static circuits with low-power dynamic circuitry. The fast segmentation speed of the present architecture further allows reduced hardware cost by a subdivided-image approach. Consequently, low-power, real-time, VGA-size color image segmentation is expected to become possible in conventional 0.35µm CMOS technology with < 50mm² area consumption for the segmentation network, forming the core of our architecture. The achieved improvements make the architecture suitable for battery-based low-cost applications such as small-robots and mobile communication equipment.

2. Segmentation-Concept Evaluation by CMOS Test-Chip The previously proposed architecture of a cell-network-based segmentation algorithm [5] obtains real-time processing of about 500 μ sec@10MHz (ave.) for VGA-size images (640 \times 480), and consists of 4 functional pipelined stages. In the 1st stage connection-weights are calculated from luminance (RGB-data for color images) differences between neighboring pixels. The 2nd stage is used to determine the set of seeds for the region-growing process, called *leader cells*, from the calculated connection-weights. The 3rd stage, the cell-network, is the core of the proposed architecture and carries out a pixelparallel image segmentation by region-growing based on calculated connection-weights and leader cells. The 4th stage serves for the output of the segmentation result. The cell-network (3rd stage) is shown in Fig. 1. It consists of active cells P_{ij} , corresponding to pixels, and weight-register blocks WR_{ij} laid between active cells. All active cells determine their present state, either self-excitation, excitation or inhibition, in parallel from the state of the neighbor cells and the corresponding connection-weights. A region-growing process starts by self-excitation of a leader cell. In each subsequent clock-cycle, if neighboring cells satisfy the excitation condition, calculated from the corresponding connection-weights, these cells are automatically excited. The region-growing process is continued as long as excitable cells exist. If there are no excitable cells, the region-growing process is finished and the excited segment-member cells are labeled by a segment number and are inhibited. A global-inhibitor circuit is used for detecting whether further excitable cells exist.

The chip photo of Fig. 2 shows the fabricated test-chip of a cell-network with 10×10 cells in 0.35µm CMOS technology.

For compact implementation, we have designed active cells and weight-register blocks in full-custom. Correct segmentation function of the test-chip through region-growing could be verified by measurements. Fig. 3 shows the example of growing 9 segments of a checker-board like image. We summarize the characteristics of the fabricated chip in Table I. The measured average power dissipation is about 24.4mW@ 10MHz. At the 100nm CMOS technology node, the estimated pixel density is 263 pixel/mm², and a cell-network including 100×100 pixels can be implemented on a $6.2\text{mm} \times 6.2\text{mm}$ chip. However, the power dissipation would be about 1 Watt, if the chip architecture is not improved further.

3. Boundary-Active-Only (BAO) Scheme for Reduced Power For battery-based applications further reduction of the power dissipation is judged as indispensable. For this purpose, we propose a boundary-active-only (BAO) scheme as a low-power technique which doesn't sacrifice real-time processing. BAO effectively exploits the region-growing characteristic of the algorithm. For the region-growing process it is not necessary, that all cells evaluate their state transition in parallel. In fact, only the boundary cells of a region have to be activated in each step of the growing process, as shown in Fig. 4. Consequently, a network cell, which satisfies one of the 3 following conditions, can assume a low-power stand-by mode. (1) It has no excited neighboring cells. (2) It is already excited. (3) It has already a segment number. We implemented this BAO scheme and a gated-clock concept into the active cells for a substantial power reduction of the cell-network. A hierarchical low-power dynamic global-inhibitor circuit, Fig. 5 shows the circuitry for one row, was also introduced. This circuit needs to process an OR function of the state signals of all active cells. By cutting state signals from cells in stand-by mode and clock signals from rows or row-portions without boundary cells, further power-reduction is possible.

4. BAO-Scheme-Performance Simulation and Subdivided-Image Approach

We designed an image segmentation test-chip with BAOscheme, in a 0.35µm 3 metal CMOS technology. Fig. 6 shows the layout image of the test-chip. From the layout of this chip design, we have estimated the power-dissipation of the proposed low-power architecture by worst case analog circuit simulation (HSPICE). Results and a comparison to the previous architecture [5] are shown in Table II. The worst case power dissipation is 6.81mW@10MHz, which corresponds to more than 75% power reduction. For large size images, the processing speed of our proposed architecture allows image segmentation by sequential pipelined processing of subdividedimage blocks with a correspondingly smaller cell-network. For a 33×25 cell-network, the estimated average processing time is about 15µsec@10MHz. Therefore, VGA-size images (640 \times 480 pixels) can be divided into 20 \times 20 overlapping blocks as shown in Fig. 7, and can be processed in sequential pipeline mode by a 33×25 cell-network. The segment structure of the complete VGA-size image can be constructed by evaluating the segmentation results in the block-overlap regions in a post-processing step. Applying this subdivided-image approach, we confirmed by simulation that VGA-size image segmentation in < 9msec, including data input and segmentation result output to/from the cell-network, becomes already possible at 10MHz clock frequency in a 0.35µm CMOS technology. 19.8mW power dissipation and 43mm² area are estimated for the cell-network.

5. Conclusions

In this paper, we proposed a low-power real-time digital image segmentation architecture, which applies a boundaryactive-only (BAO) region-growing scheme. More than 75% power reduction are realized, when compared with an architecture which doesn't use the BAO scheme [5]. If a subdivided-image approach is used, real-time VGA-size image segmentation should become possible already in 0.35µm

Fig. 1: Block diagram of the cell network construction. Cell-network is implemented by laying active cells P_{ii} and weight-register blocks WR_{ii} .

(a) input image with checker-board image

Fig. 2: Chip photo of the fabricated test chip of the cell-network-based architecture in a 0.35µm 3 metal layer CMOS technology. The layout of active cell and connection-weight register block is magnified on the right side. segmentation of region A

cell-network 0 x 10 pixels

35

(b) input/output waveforms for the proposed image-segmentation LSI chip.

Fig. 3: Measured waveforms of image-segmentation LSI chip with checker-board image.

Fig. 5: Dynamic global-inhibitor circuit which calculates an OR function of the state signals of all active cells. If there are cells in active mode, this circuit outputs a "1" (ZOR_i=1).

Table II: Power dissipation comparison with the proposed BAO-based architecture (0.35µm CMOS technology, 10MHz clock frequency).

	Previous	Proposed	Reduction
	Architecture [5]	Architecture	Ratio
Average Case	24.4mW@10MHz	5.80mW@10MHz	76.2%
Worst Case	30.9mW@10MHz	6.81mW@10MHz	78.0%

Fig. 6: The layout image of the testchip with BAO including 10×10 cells. It is designed with a standard cell library in a 0.35µm 3 metal CMOS technology.

CMOS, using a cell-network for 33×25 pixels with < 20mW power dissipation and < 50mm² area.

Acknowledgments

The test-chips in this study have been fabricated in the chip fabrication program of VLSI Design and Education Center (VDEC), the University of Tokyo in the collaboration with Rohm Corporation and Toppan Printing Corporation. Part of this work was supported by the 21st Century COE program, Ministry of Education, Science and Culture, Japanese Government

References

- [1] J. C. Russ, The Image Processing Handbook, pp. 371-429, CRC PRESS (1999)
- [2] T. Koide, et al., Proc. of ITC-CSCC2002, pp. 670-673 (2002).
 [3] H. Ando, et al., IEICE Trans. Fundamentals, Vol. E85-A, No. 2, pp.
- 381-388 (2002).
- [4] S. Y. Chien, et al., Proc. of 2002 IEEE AP-ASIC, pp. 233-236 (2002).
- [5] T. Morimoto, et al., Ext. Abst. of SSDM2002, pp. 242-243 (2002).

Weight Parallel Architecture Architecture (10x10 pixels) 0.35µm, 2-Poly, Technology 3-Metal CMOS Supply Voltage 3.3 V Measured Max 25141

Table I: Characteristics of the designed

image segmentation LSI chip.

Clock Frequency	2.5IVIEZ	
Measured Average Power Dissipation	24.4mW@10MHz	
Transistors	249,810	
Pixel Density	19.6 pixel/mm ²	

Fig. 4: Conceptual diagram of the proposed boundary-active-only (BAO) scheme. Only boundary cells are in active mode, other cells are in stand-by mode.

- Estimated processing time@10MHz : 15µsec Estimated power dissipation@10MHz : 19.8mW
- Total processing time@10MHz : 8.64msec Segmentation - (20x20) blocks x 15µsec= 6msec Data in/out - (20x20) blocks x 0.1µsec x 66cycles = 2.64msec

Fig. 7: Image-segmentation for VGA-size image with subdivided-image pipeline processing. 33×25-pixel seized blocks are processed sequentially by the cell-network with BAO scheme.