1. Introduction

Classical approaches make use of DC and S-parameters measurements in order to obtain I-V and high frequencies characteristics of the transistors. However, DC measurements suffer from several drawbacks regarding the control of working parameters of the transistor. Especially for field-effect transistors (FETs) steady-state DC characteristics don’t provide the correct RF characteristics due to trapping effects. Moreover, with the increasing current density of bipolar junction transistors (BJTs), the rise in junction temperature due to the dissipated power is becoming significant. To overcome these problems, pulsed measurement systems[1,2] were developed to pulse the bias of a device and measure the DC and RF characteristics before trapped charge or junction temperature can change appreciably. In this way, the measured data will not contain the trapping effect and self-heating effect. In this paper, DC and high-frequency characteristics of power Si BJTs with different emitter sizes will be shown based on pulsed DC and pulsed S-parameters measurements.

2. Device Characterization and Modeling

Pulsed DC and pulsed S-parameters measurements were performed using the Agilent 85124A pulsed RF modeling system.[2] The emitter areas of multi-finger Si BJTs under characterization are 0.6 \(\mu \text{m} \times 32 \mu \text{m} \times 3 \text{finger} \) and 0.6 \(\mu \text{m} \times 16 \mu \text{m} \times 6 \text{finger} \) and (0.6 \(\mu \text{m} \times 16 \mu \text{m} \times 1 \text{finger}) \times 6 \text{cell} \). Measurements were made with Cascade microwave probes in the common-emitter mode. These devices were measured on wafer with G-S-G (Ground-Signal-Ground) microwave probes up to 15GHz using standard SOLT calibration procedure. The parasitics associated with the metal pads were removed by measuring both the dummy (metal without device) and the device and subtracting one result from the other in the y-domain. Figure 1 displays the pulsed profile of a BJT. The quiescent biases for base and collector were set to 0, while base and collector pulse biases were 1V and 4V, respectively. The base voltage and collector voltage were kept at constant value in the pulse duration. However, the collector current increases gradually with measured time due to self-heating effect. In the pulsed measurement, the device is allowed to cool down during the off time of the pulse period. So the self-heating effect can be eliminated as current sampled at short measurement delay time (\(\leq 1 \mu \text{s} \)). As measurement time is long enough, the current saturates and the value approaches to that at static condition, so the self-heating almost reaches to static-state. To obtain stable signal and reduce the junction heating as low as possible, we choose 1\(\mu \text{s} \) as the measurement delay for isothermal measurement.

In this paper, the VBIC model parameters was extracted similar with Ref.[3] excepts the thermal resistance \(R_\text{th} \) and the thermal capacitance \(C_\text{th} \). In this study, \(R_\text{th} \) can be calculated by following formula:

\[
R_\text{th} = \frac{Y_{22, \text{SH}} - Y_{22, \text{noSH}}}{D x_\text{IC}/P}
\]

where \(Y_{22, \text{SH}} \) is the output conductance measured under CW(continuous wave) measurement which includes self-heating effect, \(Y_{22, \text{noSH}} \) is the output conductance measured under pulsed mode measurement which includes self-heating effect, \(P \) is the power consumption, \(D_x = (\partial I_C/\partial T)/I_C \) can be extracted from Gummel Plot measured under different temperature. Finally, \(C_\text{th} \) can be calculated based on the shape of collector current (as shown in Fig. 1), here collector current can be expressed as:

\[
I_C(t) = I_{C,0} + (I_{C,x} - I_{C,0}) \left(1 - \exp \left(-\frac{t}{\tau_0 I_{C,x}/I_{C,0}} \right) \right)
\]

where \(I_{C,0} \) and \(I_{C,x} \) is the initial value and stable value, respectively.

3. Results and Discussion

Figure 2 shows the cutoff frequency \(f_T \) of a Si HBT as a function of collector current at different measurement delays. Because of the bandgap narrowing effect in heavily doped emitter region, the bandgap difference \(\Delta E_g \) between emitter and base is negative. Since the current gain is proportional to \(\exp(\Delta E_g/kT) \), where \(k \) is Boltzman’s constant and \(T \) is temperature, the higher junction temperature will make a increase of the current gain. As a result, the measured cut-off frequency at 50\(\mu \text{s} \) is higher than that at 1\(\mu \text{s} \) when the applied current is relatively small. However, the thermal effect reduces the saturation velocity and the critical current at which the Kirk effect takes place [5], the fall-off of the cut-off frequency begins earlier for 50 \(\mu \text{s} \) measurement delay. That is the reason measured cut-off frequency at 50 \(\mu \text{s} \) is higher than that at 1\(\mu \text{s} \) in the high current region. Table 1 summarized the collector current density difference \(\Delta I_c \), the cut-off frequency difference \(\Delta f_T \), and the maximum oscillation frequency difference \(\Delta f_{\text{max}} \), of three different Si BJTs biased at \(V_{CE} = 4 \text{V} \), \(V_{BE} = 1.1 \text{V} \) between CW and pulsed-mode measurement. It seems that the thermal interaction between fingers makes higher \(\Delta I_c \) thus higher junction temperature in devices with more fingers. To reduce the thermal interaction in a multi-finger BJT and thus reduce the saturation velocity and the critical current at which the Kirk effect takes place, we can divide all the emitter
fingers into several sub-cells. As shown in Table 1, transistor with six sub-cells has lowest ∆JC, ∆fT, and ∆fmax, than those without sub-cells at same emitter area. Table 2 summarized the extracted Rth and Cth of three Si BJTs with the same emitter area. Transistor with sub-cells has lower thermal resistance than those without sub-cells. Hence, parallel interconnected sub-cells are preferable to large multi-finger layouts for Si BJTs. Figures 3 and 4 compare the VBIC modelling results of DC and AC data for the Si BJT with emitter area = 0.6μm×32μm×3finger. Measurement using ATN LP1 Load-Pull system and HB simulation using Agilent ADS are also adopted for VBIC model validation in linearity analysis and the results are shown in Fig.5 and Fig.6. All the simulation results show very good agreement with the measured data.

5. Conclusions
Electrical characteristics of the Si BJTs with different emitter design are shown and discussed based on static and pulsed-mode measurements. Parallel interconnected sub-cells are preferable to large multi-finger layouts for Si BJTs. DC, AC and linearity performance of the Si BJT is also validated using VBIC model and the simulation results show good agreement with the measured data.

References

Table 2: Thermal resistance Rth and thermal capacitance Cth of three Si BJTs with the same emitter area.

<table>
<thead>
<tr>
<th>Emitter Area</th>
<th>Rth(°C/W)</th>
<th>Cth(nF/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6μm×32μm×3</td>
<td>286</td>
<td>8.07</td>
</tr>
<tr>
<td>0.6μm×16μm×6</td>
<td>290</td>
<td>7.43</td>
</tr>
<tr>
<td>(0.6μm×16μm×1)×6sub-cells</td>
<td>254</td>
<td>7.43</td>
</tr>
</tbody>
</table>

Table 1: Collector current density difference ∆JC, cutoff frequency difference ∆fT, and maximum oscillation frequency fmax of Si BJTs with different emitter design. VCE = 4V, VBE = 1.1V.

<table>
<thead>
<tr>
<th>Emitter Area</th>
<th>Jc (CW) (μA/μm²)</th>
<th>Jc (pulse) (μA/μm²)</th>
<th>∆JC (μA/μm²)</th>
<th>fT (CW) (GHz)</th>
<th>fT (pulse) (GHz)</th>
<th>∆fT (%)</th>
<th>fmax (CW) (GHz)</th>
<th>fmax (pulse) (GHz)</th>
<th>∆fmax (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6μm×32μm×3</td>
<td>452.1</td>
<td>424.3</td>
<td>27.8</td>
<td>13.2</td>
<td>14.2</td>
<td>7.3</td>
<td>18.4</td>
<td>19.2</td>
<td>4.3</td>
</tr>
<tr>
<td>0.6μm×16μm×6</td>
<td>458.3</td>
<td>433.3</td>
<td>25.0</td>
<td>9.5</td>
<td>10.3</td>
<td>8.1</td>
<td>15.3</td>
<td>16.0</td>
<td>4.5</td>
</tr>
<tr>
<td>(0.6μm×16μm×1)×6sub-cells</td>
<td>411.5</td>
<td>396.7</td>
<td>14.8</td>
<td>17.3</td>
<td>18.2</td>
<td>5.1</td>
<td>19.4</td>
<td>19.9</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Fig. 1. Base voltage, collector voltage and collector current pulse shapes of a BJT.

Fig. 2 Cutoff frequency as a function of collector current for a Si BJT under different pulsed-mode measurement.

Fig. 3 Measured and simulated current-voltage characteristics under forward operation of the Si BJT with emitter area = 0.6μm×32μm×3finger.

Fig. 4 The modeling results of S11 and S22 traces for the Si BJT biased at Vmeas = 1V and Vce= 2V. The emitter area is 0.6μm×32μm×3finger.

Fig. 5 Modeled and measured current dependence of the output power at the fundamental (2.4GHz), 3th order and 5th order inter-modulation frequencies. Vce = 3V, Pin = -7dBm. Tone spacing = 1MHz. The emitter area of the Si BJT is 0.6μm×32μm×3finger.

Fig. 6 Modeled and measured current dependence of the output power at the fundamental(2.4GHz), second and third harmonic frequencies. Vce = 3V, Pin = -7dBm. The emitter area of the Si BJT is 0.6μm×32μm×3finger.