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1. Introduction 
 
Recently, many strained-Silicon (s-Si) approaches have 
been demonstrated in order to enhance the device perform-
ance [1-5]. The power supply reduction as well as the in-
crease of the transistor access resistance made this solution 
mandatory for 65nm node and below. While pMOS device 
are intrinsically strained by the layout scaling [6,7], nMOS 
is strongly degraded. In this work, two different s-Si ap-
proaches for nMOS enchancement are compared. The first 
one consists in using Si0.8Ge0.2 substrate relaxed buffer 
(SRB), to induce bi-axial tensile stress in Si channel inver-
sion layer. The second approach, cheaper, consists into in-
creasing the contact etch stop layer thickness in order to 
induce stress in Si-channel, and using a Ge implantation to 
avoid pMOS degradation.  
 
2. S-Si MOSFETs on Si0.8Ge0.2 SRBs 
 
SRBs consist in a step graded buffer, followed by a 
Si0.8Ge0.2 epitaxy (Fig 1a). After a specific STI formation, a 
150Å Si epitaxy is made. This define the strained- Si chan-
nel of s-Si MOSFETs. After gate oxide formation (1.2nm 
EOT), and poly-Si gate deposition, gate is patterned down 
to 42nm (Fig 1b). Spacer formation is performed keeping a 
low thermal budget. Final activation anneal is made using 
fast spike annealing. Finally, salicidation is performed us-
ing Nickel. Gate oxide quality is not degraded by s-Si as 
shown on Fig 2a. Variation of SD resistance can be seen 
Fig 2b, is due to the enhanced As diffusion and reduced B 
diffusion. NiSi formation results into an increase of 23% of 
resistance (Fig 2c). This shows that a specific optimisation 
step in necessary when using the SRB approach. Finally, 
junction leakage is dramatically increased by over 2 dec-
ades (Fig 2d). Threshold voltage roll-off for nMOS is 
strongly impacted by the modification of As diffusion, and 
a specific optimisation step is mandatory. nMOS device 
saturation current improvement as a function of gate length 
Lg is plotted on Fig 3-4. At same overdrive (Fig 3), the 
measured gain is 15%-20% for L=55nm . At same Vth (Fig 
4), if on long channel devices the gain is found to be close 
to 100%, it diminishes with Lg. This degradation of the 
improvement with Lg is fundamentally limited by device 
physics as predicted by MASTAR [9]. Moreover, because 
of the difference of conductivity between SiGe layer and Si 
layer, a self heating effect appears. This still reduces the 
saturation current by 5-10%.  
 

3. Low Cost Strain-Si approach 
 
A cheaper approach to obtain s-Si is to increase the thick-
ness (T0) and the intrinsic stress of the so-called contact 
etch stop layer (CESL) [10-11]. A similar process flow as 
described in part 2 is applied for device fabrication. We 
increased the tensile CESL thickness up to 3 times its initial 
value, and performed an optional Ge implantation in order 
to locally relax the intrinsic stress [8], and subsequently 
reduce the pMOS performance degradation. At the contrary 
of the SRBs, this approach requires no further optimisation 
steps. The nMOS IDsat improvement as a function of gate 
length is shown on Fig.7. As Lg is reducing, the perform-
ance improvement is increasing, but saturates for 
sub-0.1µm devices. Nevertheless, this makes this technique 
extendable to the next technological nodes featuring even 
smaller gate lengths. In the present experiment, for 
Lg=45nm device up to 15.6% improvement is observed 
(Fig 8), leading to a device performance of IDsat=789µA/µm 
with Ioff=88nA/µm for Vdd=0.9V, and IDsat = 920µA/µm 
with Ioff=100nA/µm for Vdd=1.0V (Fig. 9). On pMOS de-
vice, Ge implantation limits the performance degradation 
(Fig 10). Fig.11 represents the IDsat improvement, as a func-
tion of the induced strain for both pMOS and nMOS On 
pMOS, degradation is kept close to -2%, while a saturation 
of the improvement effect on nMOS seems to appear for 
the higher strain values 
 
4. Conclusion 
Comparable improvement is obtained using SRB or CESL. 

 SRB CESL 
Stress-type Substrate Process Induced 
Integration Specific - 
Max. efficiency Long device Short device 

N IDsat Improvement 
Nominal device 

15% * 15% 

P IDsat Improvement 
Nominal device 

- -2% 

* includes self-heating effect  
Nevertheless, SRB approach requires a specific substrate, 
and integration scheme for STI, Junction and silicide proc-
ess, making this integration a “high-cost” option. Never-
theless, for high performance application, the combination 
of SRB and CESL can be an interesting solution. 
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Figure 3 : IDsat enhancement as a function of 
gate overdrive. Despite self-heating impact, a 
15% enhancement is observed for a 0.6V 
overdrive  

Figure 2: comparison of (a) gate 
leakage (b) SD resitance (c) Silicide 
Resitance and (d) Diode leakage 

Figure 1: (a) Schematic representation of the SRB integration, featuring a specific 
STI module (b)TEM cross-section of nominal device fabricated on Si0.8 Ge0.2 SRB. 

Figure 4: IDsat enhancement as a function of gate 
length, at same Vth (black circle), and same over-
drive (empy circle). Dotted line : MASTAR model 

Figure 5 : low cost strained-Si inte-
gration scheme 

Figure 7 : nMOS saturation cur-
rent improvement as a function of 
gate length 

Figure 8: Ion/Ioff trade-off at 
Vdd=0.9V for un-strained and 
strained nMOS devices 

Figure 9: Ion/Ioff trade-off for 
strained nMOS devices at 

Figure 10 : Impact of Ge implant 
on Ion/Ioff trade-off for pMOS 
devices for t/t0 = 1.7. 

Figure 11 : IDsat variation as a 
function of applied strain for 
nMOS and pMOS devices 

High tensile CESL 
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