1. Introduction

For future low power CMOS devices, several-orders-of-magnitude reduction in gate leakage current(Ig) is required compared to the poly-Si/SiO2 devices at an equivalent oxide thickness(EOT) less than 2 nm. For instance, in 65nm node, Ig should be as low as 10^{-12} A/cm² at an EOT of 1.6 nm(i.e. capacitance equivalent thickness (CET) in inversion(TINV) of 2.4 nm)[1]. For that purpose, high-k gate dielectrics have been studied extensively. HfSiON is a promising candidate for a high-k gate dielectric because of its excellent electrical properties[2,3]. However, when using poly-Si gate electrode, the Fermi level(E_F) pining at the poly-Si/HfSiON interface causes both threshold voltage(V_th) shift and a large gate depletion in PMOS[4]. Thus, we consider that the combination of metal gate and HfSiON should be a possible way to overcome these problems.

Fully silicided(FUSI) metal gates have received increasing attention due to the simple integration scheme[5]. NiSi has a midgap work function on SiO2, which makes it a promising metal gate candidate for low power CMOS application[6]. However, there have been few reports which investigate the impact of the combination of FUSI-NiSi gate and high-k gate on device performance except FUSI-NiSi/La2O3 MOSFET reported by Lin et al[7].

In this paper, for the first time, we demonstrate that FUSI-NiSi/HfSiON MOSFET can exhibit excellent transistor performance. We find that NiSi on HfSiON also has a midgap work function(4.5-4.55 eV), which reduces V_th of PMOS by 0.15 V compared to the poly-Si/HfSiON MOSFETs, whereas it increases the V_th for NMOS by 0.15 V. Such a change of V_th is explained by the difference between the E_F pining level at poly-Si/HfSiON interface and the E_F of NiSi as illustrated in Fig. 4. The V_th shifts of poly-Si/HfSiON for PMOS (-0.75 V) and NMOS (0.25 V) in Fig.3 indicate that the E_F pining level is located at 0.7-0.8 eV above the top of valence band of Si (E_v). Therefore, by replacing poly-Si by NiSi, the E_F of PMOS gate approaches E_v, which causes the reduction of 0.15V in V_th shift.

Figure 3 is the difference in V_th from that for the poly-Si/SiO2 devices(V_th shift). The use of NiSi gate can suppress the V_th shift for PMOS by 0.15 V compared to the poly-Si/HfSiON MOSFETs, whereas it increases the V_th for NMOS by 0.15 V. Such a change of V_th is explained by the difference between the E_F pining level at poly-Si/HfSiON interface and the E_F of NiSi as illustrated in Fig. 4. The V_th shifts of poly-Si/HfSiON for PMOS (-0.75 V) and NMOS (0.25 V) in Fig.3 indicate that the E_F pining level is located at 0.7-0.8 eV above the top of valence band of Si (E_v). Therefore, by replacing poly-Si by NiSi, the E_F of PMOS gate approaches E_v, which causes the reduction of 0.15V in V_th shift.

Figure 5 shows relationship between Ig and T_INV of PMOSFETs. For poly-Si/HfSiON, the magnitude of Ig reduction at the same T_INV is nearly one decade compared to the poly-Si/SiO2 device. By replacing poly-Si by NiSi, we can reduce T_INV from 3.2 nm to 2.1 nm due to the elimination of gate depletion. Since Ig increase due to the T_INV reduction is not significant(factor of three), we achieved Ig = 10^{-12} A/cm² at T_INV = 2.1 nm(five orders of magnitude reduction in Ig compared to the poly-Si/SiO2).

The Id-Vg characteristics are shown in Fig. 6. All the devices show good sub-threshold characteristics, which indicate that full silicidation does not degrade the electrical properties at the HfSiON/Si interfaces.

We fabricated NMOS and PMOS FETs using a replacement gate technique. The process flow is shown in Fig. 1. We prepared HfSiON films and the reference SiO2 as gate dielectrics. After poly-Si gate formation, an activation anneal was performed at 950°C for 10 sec. The silicide gates were formed by annealing 140 nm Ni films on poly-Si at 400-600°C for 1 min. NMOS and PMOS devices with poly-Si gates were also fabricated for comparison.

3. Results and Discussion

Figure 2 shows C-V characteristics of PMOSFETs. For poly-Si/HfSiON, a large gate depletion is evident with T_INV(3.2 nm) being thicker by 1.1 nm than the CET in accumulation(T_ACC = 2.1 nm). This depletion is much larger than a normal poly-Si gate depletion(0.5-0.6 nm) and is caused by an additional anomalous depletion(0.5-0.6 nm) due to the Fermi level pining at poly-Si/HfSiON interface[4]. On the other hand, both T_INV and T_ACC for NiSi/HfSiON are 2.1 nm. This result shows that silicidation proceeded to the electrode/dielectric interface, and thus, gate depletion is eliminated. From the flatband voltage, the effective work function of NiSi on HfSiON is estimated to be 4.5-4.55 eV, which is close to Si midgap(4.6 eV), but the E_F is located at 0.05-0.1 eV above midgap.

Figure 3 is the difference in V_th from that for the poly-Si/SiO2 devices(V_th shift). The use of NiSi gate can suppress the V_th shift for PMOS by 0.15 V compared to the poly-Si/HfSiON MOSFETs, whereas it increases the V_th shift for NMOS by 0.15 V. Such a change of V_th is explained by the difference between the E_F pining level at poly-Si/HfSiON interface and the E_F of NiSi as illustrated in Fig. 4. The V_th shifts of poly-Si/HfSiON for PMOS (-0.75 V) and NMOS (0.25 V) in Fig.3 indicate that the E_F pining level is located at 0.7-0.8 eV above the top of valence band of Si (E_v). Therefore, by replacing poly-Si by NiSi, the E_F of PMOS gate approaches E_v, which causes the reduction of 0.15V in V_th shift.

Figure 5 shows relationship between Ig and T_INV of PMOSFETs. For poly-Si/HfSiON, the magnitude of Ig reduction at the same T_INV is nearly one decade compared to the poly-Si/SiO2 device. By replacing poly-Si by NiSi, we can reduce T_INV from 3.2 nm to 2.1 nm due to the elimination of gate depletion. Since Ig increase due to the T_INV reduction is not significant(factor of three), we achieved Ig = 10^{-12} A/cm² at T_INV = 2.1 nm(five orders of magnitude reduction in Ig compared to the poly-Si/SiO2).

The Id-Vg characteristics are shown in Fig. 6. All the devices show good sub-threshold characteristics, which indicate that full silicidation does not degrade the electrical properties at the HfSiON/Si interfaces.

Figure 7 shows the mobility of NiSi/HfSiON and the reference poly-Si/SiO2 MOSFETs. NiSi/HfSiON PMOS device does not show the mobility degradation(100% of the reference transistor). The mobility of NiSi/HfSiON NMOS at 0.8-1 MV/cm is 80-90% of that of the reference MOSFET. These carrier mobilities are much higher than those of FUSI-NiSi/La2O3 devices(50-60% of that of poly-Si/SiO2 device)[7]. We speculate that the reported mobility degradation was caused by a high interfacial trap density and/or metal diffusion into gate dielectric during annealing. The obtained high carrier mobility for our devices may come from the excellent electrical properties at the HfSiON/Si interfaces[3] and the suppression of Ni diffusion, which are suggested by the good sub-threshold characteristics.
explained by three factors: the elimination of gate depletion (45% \(I_d \) increase), the suppression of \(V_{th} \) shift (55% \(I_d \) increase) and a slight mobility decrease due to higher effective field, \(E_{eff} \) (15% \(I_d \) decrease, see Fig. 7), which is caused by reduction in \(T_{INV} \).

4. Conclusion

For the first time, we demonstrate that FUSI-NiSi/HfSiON MOSFET can exhibit excellent transistor performance. We find that midgap work function for NiSi on HfSiON(4.5-4.55 eV) reduces \(V_{th} \) shift of PMOS by 0.15 V. \(I_g \) of \(10^{-3} \) A/cm² at \(T_{INV} = 2.1 \) nm is achieved due to the elimination of gate depletion. We can also obtain the excellent carrier mobility for the NiSi/HfSiON transistors(PMOS:100%, NMOS:90%). These results show that NiSi/HfSiON gate stack is a promising candidate for low power CMOS applications in 65nm node.

Acknowledgements

The authors would like to thank Dr. Nobuyuki Ikarashi for his useful discussions. The authors also would like to express their appreciation to Dr. Yasunori Mochizuki and Dr. Masao Fukuma for their encouragement during this work.

References