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1. Introduction

High-k (e.g. HfO,) and oxynitride films are expected to
replace SiO, as the gate dielectric for power-constrained
CMOS technologies beyond the 90-nm node [1], and
CMOS devices with poly-Si gate electrodes are being con-
sidered for possible near-term solutions [2]. The develop-
ment of these technologies requires accurate extraction of
parameters such as EOT and the active poly-Si doping den-
sity Nyl Fitting a theoretical model to experimental C-V
data is usually used to extract these parameters, and the
accuracy with which extractions can be done relies in part
on the assumptions made in the model. In this work, a
one-dimensional model of the poly-Si/dielectric/Si struc-
ture is used to demonstrate the effect of electrically active
interfacial charges at the poly-Si/dielectric interface (Q,,)
on the extracted EOT and N,,,. We show that fitting ex-
perimental C-V data to a model that does not account for
O, may result in excellent agreement between the model
and measured C-V curves, but non-physical values of EOT
and N,1,. For the technologically important cases of high-«
or heavily nitrided SiON gate dielectrics, where a substan-
tial Q,, density the poly-Si/dielectric interface has been
invoked to explain large V; shifts and is often discussed in
the framework of gate electrode Fermi-level pinning [3],
the use of a C-V model which accounts for this charge is
required. We present a systematic examination of the errors
in extracted EOT and N,y when these charges are not ac-
counted for in the C-7 model.

2. The Model

Fig. 1 illustrates the poly-Si/dielectric/Si structure in-
cluding the referenced potential drops across the regions of
interest. Global equilibrium, Gauss’s law and Poisson’s
equation in the Si and poly-Si regions are used to calculate
0, 0,, ¢, and ¢, as a function of gate voltage V, by solving
the following set of equations using a Newton’s method:
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Analytical expression of F(¢,N) is found from the solution
of Poisson’s equation assuming uniform doping density in
the Si channel and poly-Si gate. It is assumed that do-
nor-like traps are located near E- and acceptor-like traps
are located near Ey (see Fig. 1), following the results in [3].

This enables the simplifying assumption that the Q,, is ap-
proximately bias independent from V, to strong inversion.

3. Results and Discussion

C-V curves for p'-poly-Si/insulator/n-Si (pMOS) and
n"-poly-Si/insulator/p-Si (#MOS) structures are calculated
for EOT =10A, N, = 5x10"7 cm™, and Ny, =10 cm™.
The interfacial charge Q,,/g was varied in the range 0 to
2.2x10" em? and set to be positive for pMOS structures
and negative for nMOS structures. These polarities were
shown experimentally to have the biggest impact on
poly-Si depletion and threshold voltage for pMOS and
nMOS devices, and are related to the chemistry of interface
formation between the poly-Si gate and a given dielectric
[3]. Representative simulated C-V curves are shown in Fig.
2. In order to demonstrate the error committed in the
determination of EOT and N,y when the C-V data is fitted
to a model that does not account for Q,,, a widely accepted
C-V fitting routine (NCSU CVC [4]) was used to extract the
EOT, Nyoy and Vy, from simulated C-V curves generated
above for each value of Q,,. C-V numerical data and NCSU
CVC best fits are shown in Fig. 3 for pMOS devices with
0Oqo/q = 0 and +10" ¢m™. The CVC extracted EOT, Vi and
Npoly from C-V curves produced by the model used here are
plotted versus Q,, in Fig. 4. It is shown that N, is under-
estimated and EOT is significantly overestimated compared
to original simulation parameters when Q,, is non-zero.
The error between nominal and extracted values increases
with increasing Q,,. A similar behavior of NCSU CVC ex-
tracted Npory as a function of nitrogen dose in SiON dielec-
trics was obtained in [5] for pMOS devices. In light of the
results shown here and the model proposed by Wang et
al.[6], that O, is proportional to nitrogen concentration at
the poly-Si/SiON interface, the “apparent” reduction of
active poly-Si doping with increasing nitrogen observed in
[5] might be non-physical. In Fig. 5, the flatband voltage
Vs plotted versus Q,,/q for different EOT assuming Or/q
=10"" cm™.  Such plot may be used to estimate the 0./q
density for a given experimental V5 shift. Example fit to
SiO, and Al,O; data (from Ref. 7) is shown in Fig. 6.

4. Conclusions

The active interfacial charges at the poly-Si/dielectric
interface have been shown to have significant impact on the
determination of EOT and active poly-Si gate doping den-
sity. Although an excellent fit may be obtained between
C-V data and models that do not account for these charges,
non-physical values of Ny and EOT result.
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Fig.1 Schematic of poly-Si/dielectric/Si
structure. Oy, is the effective fixed oxide
charge and Q,, is the interfacial charge

density at the poly-Si/dielectric interface.
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Fig. 3 C-V curves simulated using a model that account for Q,, ((1)-(3)) and best fits using NCSU CVC tool.
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Fig. 2 Representative simulated C-V curves for pMOS (a) and nMOS (b)

The poly-Si doping density N,y = 10* ¢cm™. The presence of Og, at the
poly-Si/dielectric interface results in ¥ shift and additional poly-Si depletion
in strong inversion of p"-poly-Si/n-Si and n"-poly-Si/p-Si structures.
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