Determination of Polysilicon Gate Doping in High-к or Oxynitride MOSFETs with Gate Electrode Fermi-Level Pinning

Khaled Z. Ahmed and Philip A. Kraus Front End Products Group, Applied Materials, Inc. 3050 Bowers Ave., MS 81249, Santa Clara, California 95054, USA Phone: +1-408-584-0296 E-mail: khaled ahmed@amat.com

1. Introduction

High- κ (e.g. HfO₂) and oxynitride films are expected to replace SiO₂ as the gate dielectric for power-constrained CMOS technologies beyond the 90-nm node [1], and CMOS devices with poly-Si gate electrodes are being considered for possible near-term solutions [2]. The development of these technologies requires accurate extraction of parameters such as EOT and the active poly-Si doping density N_{poly} . Fitting a theoretical model to experimental C-V data is usually used to extract these parameters, and the accuracy with which extractions can be done relies in part on the assumptions made in the model. In this work, a one-dimensional model of the poly-Si/dielectric/Si structure is used to demonstrate the effect of electrically active interfacial charges at the poly-Si/dielectric interface (Q_{go}) on the extracted EOT and N_{poly} . We show that fitting experimental C-V data to a model that does not account for Q_{go} may result in excellent agreement between the model and measured C-V curves, but non-physical values of EOT and N_{poly} . For the technologically important cases of high- κ or heavily nitrided SiON gate dielectrics, where a substantial Q_{go} density the poly-Si/dielectric interface has been invoked to explain large V_t shifts and is often discussed in the framework of gate electrode Fermi-level pinning [3], the use of a C-V model which accounts for this charge is required. We present a systematic examination of the errors in extracted EOT and N_{poly} when these charges are not accounted for in the C-V model.

2. The Model

Fig. 1 illustrates the poly-Si/dielectric/Si structure including the referenced potential drops across the regions of interest. Global equilibrium, Gauss's law and Poisson's equation in the Si and poly-Si regions are used to calculate Q_s , Q_p , ϕ_s and ϕ_p as a function of gate voltage V_g by solving the following set of equations using a Newton's method:

$$Q_{fo} + Q_s + Q_{go} + Q_p = 0$$
, $V_g = V_{fb} + \phi_s - \phi_p + V_{ox}$ (1)

$$\varepsilon_{ox} \frac{V_{ox}}{EOT} = Q_{go} + Q_p, \quad -\varepsilon_{ox} \frac{V_{ox}}{EOT} = Q_{fo} + Q_s$$
(2)

$$Q_{p} = F(\phi_{p}, N_{poly}), Q_{s} = F(\phi_{s}, N_{sub}), C_{g} = \partial Q_{p} / \partial V_{g}$$
(3)

Analytical expression of $F(\phi, N)$ is found from the solution of Poisson's equation assuming uniform doping density in the Si channel and poly-Si gate. It is assumed that donor-like traps are located near E_C and acceptor-like traps are located near E_V (see Fig. 1), following the results in [3]. This enables the simplifying assumption that the Q_{go} is approximately bias independent from V_{fb} to strong inversion.

3. Results and Discussion

C-V curves for p^+ -poly-Si/insulator/*n*-Si (pMOS) and n^+ -poly-Si/insulator/p-Si (nMOS) structures are calculated for EOT =10Å, $N_{sub} = 5 \times 10^{17}$ cm⁻³, and $N_{poly} = 10^{20}$ cm⁻³. The interfacial charge Q_{go}/q was varied in the range 0 to 2.2×10^{13} cm⁻² and set to be positive for *p*MOS structures and negative for nMOS structures. These polarities were shown experimentally to have the biggest impact on poly-Si depletion and threshold voltage for pMOS and nMOS devices, and are related to the chemistry of interface formation between the poly-Si gate and a given dielectric [3]. Representative simulated C-V curves are shown in Fig. 2. In order to demonstrate the error committed in the determination of EOT and N_{poly} when the C-V data is fitted to a model that does not account for Q_{go} , a widely accepted C-V fitting routine (NCSU CVC [4]) was used to extract the EOT, N_{poly} and V_{fb} from simulated C-V curves generated above for each value of Q_{go} . C-V numerical data and NCSU CVC best fits are shown in Fig. 3 for pMOS devices with $Q_{go}/q = 0$ and $+10^{13}$ cm⁻². The CVC extracted EOT, V_{fb} and N_{poly} from C-V curves produced by the model used here are plotted versus Q_{go} in Fig. 4. It is shown that N_{poly} is underestimated and EOT is significantly overestimated compared to original simulation parameters when Q_{go} is non-zero. The error between nominal and extracted values increases with increasing Q_{go} . A similar behavior of NCSU CVC extracted N_{poly} as a function of nitrogen dose in SiON dielectrics was obtained in [5] for pMOS devices. In light of the results shown here and the model proposed by Wang et al.[6], that Q_{go} is proportional to nitrogen concentration at the poly-Si/SiON interface, the "apparent" reduction of active poly-Si doping with increasing nitrogen observed in [5] might be non-physical. In Fig. 5, the flatband voltage V_{fb} is plotted versus Q_{go}/q for different EOT assuming Q_{fo}/q =10¹¹ cm⁻². Such plot may be used to estimate the Q_{go}/q density for a given experimental V_{fb} shift. Example fit to SiO₂ and Al₂O₃ data (from Ref. 7) is shown in Fig. 6.

4. Conclusions

The active interfacial charges at the poly-Si/dielectric interface have been shown to have significant impact on the determination of EOT and active poly-Si gate doping density. Although an excellent fit may be obtained between C-V data and models that do not account for these charges, non-physical values of N_{poly} and EOT result.

Fig.1 Schematic of poly-Si/dielectric/Si structure. Q_{fo} is the effective fixed oxide charge and Q_{go} is the interfacial charge density at the poly-Si/dielectric interface.

Fig. 2 Representative simulated *C*-*V* curves for *p*MOS (a) and *n*MOS (b) The poly-Si doping density $N_{poly} = 10^{20}$ cm⁻³. The presence of Q_{go} at the poly-Si/dielectric interface results in V_{fb} shift and additional poly-Si depletion in strong inversion of p^+ -poly-Si/*n*-Si and n^+ -poly-Si/*p*-Si structures.

Fig. 3 C-V curves simulated using a model that account for Q_{go} ((1)-(3)) and best fits using *NCSU CVC* tool. (a) $Q_{go}/q=0$, (b) and (c) fitting bias range from accumulation to inversion and V_{fb} to inversion, respectively, for $Q_{go}/q=10^{13}$ cm⁻².

References

ITRS 2001.
K. Sekine *et al.*, *IEDM* 2003, p. 103

- [3] C. Hobbs *et al.*, *VLSI Symp.* 2003, p. 9.
- [4] J. Hauser, private communication.
- [5] K. Ahmed *et al.*, *IEEE EDL* 2003, p. 445.
- [6] Z. Wang *et al.*, *IEEE EDL*, 2000, p. 170.

[7] J. H. Lee et al., IEDM 2000, p. 645.

Fig. 5 Simulated V_{fb} vs Q_{go}/q for different nominal N_{poly} .

Fig. 6 Data and CVC best fits for SiO₂ and Al₂O₃ dielectrics C-V data [7].