Analysis and modeling of size dependent mobility enhancement due to mechanical stress

Takui Tanaka, Ken-ichi Goto, Ryu Nakamura, and Shigeo Satoh
FUJITSU Ltd.
50 Fuchigami, Akiruno, Tokyo 197-0833 Japan
Tel: +81-42-532-1253, Fax: +81-42-532-2514, E-mail: \(^{1}\)tanaka.takui@jp.fujitsu.com

Abstract We applied a BSIM3v3-like compact model in order to analyze size dependent low field mobility in MOSFETs. By using new extraction procedure, we have successfully extracted gate length dependence of mobility degradation and enhancement due to halo and mechanical stress. The new method is applicable to wide variation of device sizes, structures and materials.

1 Introduction Recent studies clarified that mechanical stress can modulate the current in scaled MOSFETs \[1\]. Low field mobility \(\mu\) will continuously vary with the device size because of the mechanical stress. To correctly evaluate \(\mu\), consideration of external series resistance \(R_{sd}\) and mobility modulation due to perpendicular electric field \(E_{z}\), channel dopant (e.g. halo or pocket) is required (Fig. 1). However, most conventional methods of \(R_{sd}\) or \(\mu\) extraction [2–4] have limited validity since they assumed constant mobility between different gate lengths [5,6]. An approach by \(dR/dL\) method [7] is difficult to detect continuous size dependency.

In this paper, we applied a BSIM3v3-like compact model to analyze \(R_{sd}\) and size dependent low field mobility. We propose a novel extraction method (named “6c-5p” method), which realizes highly accurate parameter extraction and show it can measure mobility degradation or enhancement as a function of the gate length.

2 Mobility extraction method Our current model at the triode region (Eq. 1–4) is a simplified and modified BSIM3v3 [8] compact model and a modified Ref. 3 on \(A_{bulk}\). The assumption is: measured \(I_{ds}\) is series of intrinsic FET with \(I_{ds}\) and constant resistance \(R_{sd}\); first- and second-order mobility reduction factor \(\Theta_{1}, \Theta_{2}\); simplified \(V_{g}\) valid at strong inversion region.

\[
\begin{align*}
V_{ds}/I_{ds} &= V_{ds}/I_{ds0} + R_{sd} \\
I_{ds0} &= (\mu_{eff} W C_{ox} / L_{eff}) V_{g eff} V_{ds} \tag{2}
\end{align*}
\]

\[
\begin{align*}
\mu_{eff} &= \mu_{0} / (1 + \Theta_{1} V_{g eff} + \Theta_{2} V_{g eff}^{2}) \tag{3}
\end{align*}
\]

\[
\begin{align*}
V_{g eff} &= V_{g} - V_{th} - A_{bulk} V_{ds} / 2 \tag{4}
\end{align*}
\]

\[
\begin{align*}
U_{0} &= \mu_{0} W C_{ox} / L_{eff}, \Theta_{1 eff} = \Theta_{1} + U_{0} R_{sd} \tag{5}
\end{align*}
\]

\[
\begin{align*}
\frac{1}{I_{ds}} &= \frac{1}{U_{0} V_{ds}} \left\{ \frac{V_{g eff}}{1 + \Theta_{1 eff} V_{g eff} + \Theta_{2} V_{g eff}^{2}} \right\} \tag{6}
\end{align*}
\]

\[
\begin{align*}
g_{m} &= \frac{\partial I_{ds}}{\partial V_{g}} \tag{7}
\end{align*}
\]

\[
\begin{align*}
Y^{2} &= \frac{U_{0} V_{ds}}{1 - \Theta_{2} V_{g eff}^{2}} \tag{8}
\end{align*}
\]

The substrate charge effect is negligible (\(A_{bulk} = 0\)) at a symmetric bias condition \(V_{ds} = V_{gs} = V_{ds}/2\) in our measurement \((V_{ds} = 20 \text{ mV})\). We have confirmed good linearity of \(I_{ds}\) on \(V_{ds}\) making sure that \(R_{out} \cong 1 / (\partial I_{ds}/\partial V_{ds})\) is independent of \(V_{ds}\). A derived basic equation (Eq. 6) includes five model parameters “5p” \((U_{0}, \Theta_{1}, \Theta_{2}, R_{sd}, V_{th})\).

To extract model parameters, we propose a pair of new reference values \(Y^{2}/V_{g eff}^{2}\) and \(I_{ds}/V_{g eff}\) in addition to four conventional values \(I_{ds}/V_{ds}^{2}\) (at low \(V_{ds}\), \(g_{m}\), \(Y\), the pair has the merit that the sensitivity of \(\Theta_{1 eff}\) and \(\Theta_{2}\) is independent and that of \(U_{0}\) is the same each other (Eq. 8). Since those six reference curves “6c” derived from \(I_{ds}-V_{ds}\) (Fig. 2) have different sensitivity (Tab. 1), we have referred all “6c” at the same time in the parameter extraction.

The parameter extraction has done by the five steps: (1) we extracted \(U_{0}, \Theta_{1 eff}, \Theta_{2}, V_{th}\) in each \(L_{eff}\) (Fig. 2) self-consistently between a set of \((U_{0}, \Theta_{1 eff}, \Theta_{2})\) and \(V_{th}\). The extracted \(V_{th}\) was slightly (~ 55 mV) larger than linearly-extrapolated \(V_{th}\) from \(g_{m maxi}\) (2) we extracted \(R_{sd}\) by plotting \(\Theta_{1 eff}-U_{0}\) among all \(L_{eff}\)’s (3). Note that errors of \(L_{eff}\) and \(\Theta_{1 eff}\) do not affect on the \(R_{sd}\) extraction. The result (Fig. 3(a)) shows the assumption of constant \(R_{sd}\) and \(\Theta_{1 eff}\) for all different \(L_{eff}\) is valid. (3) we re-extracted \(U_{0}\) with the extracted \(\Theta_{1}, R_{sd}\). (4) we extracted \(L_{eff}\) by \(C-V, \text{SEM}, \text{TEM}\) measurement (Fig. 3(b)) and by the inverse modeling method [9]. (5) we calculated \(I_{ds0}, \Theta_{0}\) using the extracted \(R_{sd}, L_{eff}, U_{0}\). An error of \(L_{eff}\) (and \(W, C_{ox}\)) may affect on \(\mu_{0}\) only at this step.

3 Result and discussion Figure 5 shows the result of \(I_{ds}-V_{g}\) and its derivatives comparing measurement and model for all \(L_{eff}\) range. We have found that the model is very accurate and the extracted parameter set is highly reliable in all range of \(L_{eff}\) from 2 µm to \(\leq 20\) nm. The calculated current and mobility by our method is found to be equivalent to the well calibrated device simulation (Fig. 2, 4).

We calculated \(g_{m maxi}\) of intrinsic MOSFET using \(I_{ds0}\) with \(R_{sd}\) correction. It is found that corrected \(g_{m maxi}\) is much larger and not saturated with decreasing \(L_{eff}\) in contrast to raw \(g_{m maxi}\) without \(R_{sd}\) correction (Fig. 6(a)). The corrected \(g_{m maxi}\) was found to be proportional to \(U_{0}\) (Fig. 6(b)), showing the corrected \(g_{m maxi}\) and the extracted \(U_{0}\) are consistent.

The extracted \(\mu_{0}\) decreases with decreasing \(L_{eff}\) (Fig. 7, filled symbols). It is expected to mobility reduction due to heavy halo (or pocket) dose. By comparing \(\mu_{0}\) among the various SiN cover thickness (Fig. 7, open symbols), the enhancement of \(\mu_{0}\) due to mechanical stress has found to reach a peak at \(L_{eff} \sim 200\) nm.

Since our method relies only on the model accuracy, the application is not limited in this case and it can treat other structures (e.g. SOI, double gate) and materials (e.g. high-k).

4 Conclusion By the newly developed “6c-5p” method, we have successfully extracted the gate length dependence of mobility degradation/enhancement due to halo and mechanical stress without disturbance of series resistance for the first time. The new method is widely applicable to analysis and modeling of future advanced MOSFETs.

References
Figure 1: Schematic illustration of MOSFET with mechanical stress. To correctly extract mobility, consideration of R_{sd} and mobility modulation due to several effects is required.

Figure 2: I_d-V_g and five plots derived from the I_d-V_g curve. We propose new reference value Y^2/V_{ges}^2 and I_{ds}/V_{ges} (Eq. 8), which are better to check errors of U_0, Θ_1, and Θ_2. We have extracted five model parameters “5p” (U_0, Θ_1, Θ_2, R_{sd}, V_{ih}) by referring those six curves “6c” (Table 1).

Figure 3: (a) R_{sd}, Θ_1, and (b) L_{eff} extraction. Note that errors of L_{eff} and L_{eff}-dependent i_{to} never affect on R_{sd} extraction.

Figure 4: Electron mobility averaged along with the vertical direction, where well calibrated device simulation and the compact model are compared. It is found that the compact model is equivalent to the device simulation and the outside of the metallurgical junctions can treat as a constant series resistance.

Figure 5: Gate length dependence of $I_{ds}-V_g$ and its derivatives. The model well fits the measurement from $L_{eff} \sim 2 \mu m$ to $L_{eff} \lesssim 20 \text{ nm}$.

Figure 6: g_m vs. L_{eff} and U_0 comparing with and without R_{sd} correction. I_{ds} with R_{sd} correction is calculated by Eq. 1 as shown in inset: an example of I_{ds} and g_m at $L_{eff} = 20 \text{ nm}$.

Figure 7: L_{eff} dependence of low field mobility μ_0 at $V_g = V_{th}$ (filled) relative to ($L_{eff} = 2 \mu m$, thin SiN cover), and (open) relative to (each L_{eff}, thin SiN cover), comparing nMOSFETs with various SiN cover thickness.

Table 1: Sensitivity of parameters to six functions. ‘□’ , ‘△’, ‘◊’, ‘∗’, ‘×’, and ‘—’ denotes quite high, high, middle, low, and no sensitivity, respectively. $\Theta_{eff} = \Theta_1 + R_{sd}U_0$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>I_d</th>
<th>U_0</th>
<th>Θ_{eff}</th>
<th>Θ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>conventional</td>
<td>\otimes</td>
<td>\otimes</td>
<td>\triangle</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>$1/I_d$</td>
<td>\otimes</td>
<td>Δ</td>
<td>\triangle</td>
</tr>
<tr>
<td></td>
<td>g_m</td>
<td>\otimes</td>
<td>\otimes</td>
<td>\otimes</td>
</tr>
<tr>
<td></td>
<td>$Y^{[3, 4]}$</td>
<td>\otimes</td>
<td>Δ</td>
<td>\otimes</td>
</tr>
<tr>
<td></td>
<td>Y^{2/V_{ges}^2}</td>
<td>Δ</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>I_d/V_{ges}</td>
<td>Δ</td>
<td>\otimes</td>
<td>\otimes</td>
</tr>
</tbody>
</table>