1. Introduction
Ferroelectric random access memories (FRAM) are presently the object of intensive studies due to their ideal properties such as non-volatility, fast write/read time, and low power consumption. In one of our recent papers, we reported on a stand-alone FRAM device with 0.25 µm design rule, 15² cell size, and 1 transistor / 1 capacitor (ITIC) structure and demonstrated its high reliability[1]. However, a problem still to be solved is large cell size which however imposes on backend integration processes, since ferroelectric capacitor easily degrades when improper processes are used.

Optimization of Barrier Metal (BM) and W Deposition Scheme
Al, which was originally used as a metal interconnection material in the stand-alone FRAM device, cannot be used in the FRAM embedded smartcard. Increased aspect ratios result in high contact resistances (R_c) and even contact fails. Although conventional CVD tungsten is generally the standard solution for interconnection plugs in logic devices, high hydrogen contents and high temperatures during deposition complicate the use for FRAMs. This is shown in Fig. 2, where the sensing window is shown for Al and W-plugged stand-alone FRAM devices, respectively. The small sensing window for the W plug case indicates that degradation of the capacitor due to hydrogen damage indeed occurs for conventional W-plugging. Optimizing W plug scheme by reducing hydrogen contents and/or lowering temperature during deposition results in a significantly reduced capacitor degradation, as shown in Fig. 3. The best results are achieved by a combination of the two factors.

The use of W-plugs requires the application of a barrier metal (BM) layer and an adapted etch scheme. As the standard high temperature BM process causes capacitor degradation, we utilized a deposition scheme with lowered temperatures. Additionally, we replaced the via etch stop to Al (VESA) etch scheme with via etch stop to TiN (VEST) scheme to achieve a stable and uniform distribution of R_c values. Results are summarized in Fig. 4 (a) and (b). It can be seen that degradation of the capacitor polarization is completely prevented and a uniform distribution of R_c is achieved.

IMD and EBL Process
The IMD deposition method used for EEPROM embedded smart cards is another critical integration process for ferroelectric capacitors. Hydrogen damage as well as stress exerted on the PZT films is possible causes of capacitor degradation. The conventional high density plasma (HDP) oxide, which is used because of its good step coverage properties, causes severe degradation of 2P values as can be seen in Fig. 5. As shown in the graph, a protective oxide buffer layer between HDP and capacitor reduces degradation to a certain extent. However, only a novel scheme utilizing an optimized oxide deposition procedure combined with a buffer layer shows satisfactory results. In spite of optimized backend processes, additional measures for protecting the ferroelectric PZT film are still necessary. As previously reported, multiple encapsulating barrier layers (EBL) for PZT protection were utilized. This remains valid also for the optimized backend scheme. In Fig. 6 (a) and (b), the effects of applying EBLs in combination with the altered backend processes are demonstrated. It is obvious that only a combination of all factors leads to a satisfactory result.

Ferroelectric Properties and Sensing Window
In order to investigate the effectiveness of the capacitor protecting scheme mentioned above, properties of the ferroelectric capacitors were measured at different levels of integration. In Fig. 6(b), 2P values of the capacitors are shown after the deposition of the capacitor stack, at the ATE level and after metal-3 deposition, respectively. It is seen that after back end integration 2P values still amount to 85% of the original values, which shows that an
effective protection of the capacitors is achieved. Improved capacitor properties result in a significantly increased sensing margin compared to the non-optimized integration scheme. As shown in Fig. 7, the optimized back end process leads to a large sensing margin of 380 mV between data “1” and “0”, which is not far from the value of 420 mV for the previous stand-alone FRAM integration.

4. Conclusions

We discussed degradation of ferroelectric capacitor properties due to hydrogen and high temperature damage during backend processes in the viewpoint of integration into smartcard architecture. An optimized backend scheme was suggested, which consists of the application of low hydrogen and low temperature W-plug and BM deposition, an accordingly adapted via etch scheme, an optimized IMD oxide deposition, and the application of multiple EBLs. We demonstrated that capacitor degradation could almost completely be prevented through the combined application of the various optimized processes.

References

Fig. 1 (a) Layout image and (b) schematic illustration of FRAM embedded smartcard.

Fig. 2 Measured charge distributions after smartcard BEOL scheme and stand-alone BEOL scheme.

Fig. 3 Normalized 2P, variation with W deposition scheme.

Fig. 4 (a) Distribution of R_c and (b) polarization variation with BM deposition method.

Fig. 5 Comparison of 2P, at ATE, Al-2, and Al-3 integration step when all optimized conditions are employed. (P-V graph after Al-3 step is drawn, also.)

Fig. 6 Polarization trend as a function of (a) EBL and (b) IMD with or w/o EBL scheme.

Fig. 7 Sensing margin of FRAM cell between stand-alone type and smartcard type.