Noise Analysis of AlGaN/GaN MOS-HFETs with Photochemical-Vapor Deposition SiO₂ Layer

Y. Z. Chiou¹, C. K. Wang², S. J. Chang², Y. K. Su², C. S. Chang², T. K. Lin², T. H. Fang¹ and J. J. Tang¹

¹Department of Electronics Engineering, Southern Taiwan University of Technology, Tainan, Taiwan 710 Email:yzchiou@mail.stut.edu.tw ²Institute of Microelectronics & Department of Electrical Engineering National Cheng Kung University, Tainan, Taiwan 70101

Abstract

The noises of AlGaN/GaN metal-oxide semiconductor heterostructure field-effect transistors (MOS-HFETs) and HFETs were investigated as functions of gate voltage and the drain-source distance in the low-drain bias. The normalized noise-power densities of the two HFETs were both proportional to $V_{\rm gs}{}^{-1}$ when the devices were biased at $-4~V < V_{\rm gs} < 0~V$ and were independent of the gate voltage when the devices were biased at $V_{\rm gs} > 0~V.$ Moreover, the normalized noise-power densities of both devices were reversely proportional to the drain-source distance when $V_{\rm gs} > 0~V.$ Also, all the experiment data can be well explained by Hooge's Law.

1. Introduction

Previously, we have shown that photochemical-vapor deposition (photo-CVD), using the deuterium (D₂) lamp as the excitation source, can grow high-quality SiO_2 layers used as the gate-oxide layers in nitride-based metal-oxide-semiconductor HFETs (MOS-HFETs)¹⁻³.

However, the low-frequency noise is one of the most important parameters of microwave devices. In this study, nitride-based metal-oxide-semiconductor heterostructure field-effect transistors (MOS-HFETs) and heterostructure field-effect transistors (HFETs) were both fabricated. The low-frequency noises of the fabricated devices were investigated and reported as functions of gate voltage and drain-source distance in the low drain-bias region.

2. Experiment

The structures of AlGaN/GaN MOS-HFETs and HFETs used in this study were all grown on c-face (0001) 2-inch sapphire (Al₂O₃) substrates by metalorganic chemical-vapor deposition (MOCVD). The structures consist of a 30-nm-thick low-temperature GaN nucleation layer, a 2-µm-thick unintentionally-doped GaN layer, a 5-nm-thick unintentionally-doped Al_{0.22}Ga_{0.78}N spacer layer, a 15-nm-thick Si-doped Al_{0.22}Ga_{0.78}N carrier-supplying layer (n = 5×10^{18} cm⁻³) and a 4-nm-thick unintentionally doped Al_{0.22}Ga_{0.78}N carrier-supplying HFETs, with exactly the same device structure, but without the photo-CVD oxide layer, were also fabricated.

3. Results and Discussion

A. The Effect of Gate Voltage at $V_{ds} = 3$ V:

Fig.	1(a)	and	1(b)	show	measured
------	------	-----	------	------	----------

room-temperature-normalized noise spectra of the fabricated MOS-HFETs and HFETs, respectively, in low-drain-bias regions. Figures 2(a) and 2(b) show normalized noise-power densities as functions of gate voltage (V_{gs}) (Fig. 2(a) $V_{gs} < 0$ V, 2(b) $V_{gs} > 0$ V) for the fabricated MOS-HFET and HFET biased at low drain voltage. Insert Fig. 2(a) and 2(b) show total channel resistance as functions of gate voltage.

B. The Effect of Drain-Source Distances for $V_{gs} \ge 0$ V

The normalized low frequency noise spectra of our fabricated MOS-HFETs and HFETs can all be reasonably well fitted by the 1/f law up to 1 kHz when devices were biased at linear region (i.e. $V_g = 0$ V, $V_{ds} = 3$ V). Fig. 3(a) and 3(b) show measured room temperature normalized noise spectra of the fabricated MOS-HFETs and HFETs, respectively, for different drain-source distance at $V_{gs} = 0$ V. It was found that the normalized noise-power densities of devices were reversely proportional to the both drain-source distance. Previously, we have demonstrated that the low-frequency noises of our MOS-HFETs and HFETs were dominated by the parasitic series resistance (R_s) when devices were biased before pinch-off region. It can be seen clearly that all these spectra can be fitted reasonably well by the 1/L (L:drain-source distance) curve up to 1 kHz. Moreover, it can also be clearly seen that these theoretical equations agree very well with the experimental results. Such a result again supports the assumption that total resistance (R_{total}) was dominated by series resistance (R_s) before device pinch-off.

4. Summary

The low-frequency noises of AlGaN/GaN metal-oxide semiconductor heterostructure field-effect transistors (MOS-HFETs) and heterostructure field-effect transistors (HFETs) were investigated as functions of the gate voltage and drain-source distance at low drain bias. At low drain bias, it was found that the measured noise spectra can fit well by the 1/f law up to 10 kHz. At 100 Hz, the normalized noise-power densities of the two HFETs were both proportional to V_{gs}⁻¹ when the devices were biased at -4 V < V_{gs} < 0 V, and were independent of the gate voltage when the devices were biased at V_{gs} > 0 V. For the effect of each drain-source distance, it was found that the normalized noise-power densities of both devices were reversely

proportional to the drain-source distance. Moreover, all the experiment data of the above two bias conditions can be explained well by noise theory and Hooge's law.

References

- [1] C. K. Wang, Y. Z. Chiou, S. J. Chang, Y. K. Su, B. R. Huang, T. K. Lin and S. C. Chen, J. Electron. Mater. 32, 407 (2003).
- [2] Y. Z. Chiou, S. J. Chang, Y. K. Su, C. K. Wang, T. K. Lin and B. R. Huang, IEEE Tran. Electron. Dev. 50, 1748 (2003).
- [3] S. J. Chang, Y. K. Su, Y. Z. Chiou, J. R. Chiou, B. R. Huang, C. S. Chang, and J. F. Chen, Journal of the Electrochemical Society, **150**, C77 (2003).

Fig. 1(a) Normalized-noise spectra of the fabricated

MOS-HFETs.

Fig. 1(b)Normalized-noise spectra of the fabricated HFETs.

Fig. 2(a) Normalized noise-power densities as functions of gate voltage (V_{gs}) biased at low drain voltage, $V_{gs} < 0$ V.

Fig. 2(b) Normalized noise-power densities as functions of gate voltage (V_{gs}) biased at low drain voltage, $V_{gs} > 0$ V.

Fig. 3(a) Normalized-noise spectra of the MOS-HFETs for different drain-source distance at different frequencies.

Fig. 3(b) Normalized-noise spectra of the HFETs for different drain-source distance at different frequencies.